List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6030850/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Resting Microglia Directly Monitor the Functional State of Synapses <i>In Vivo</i> and Determine the Fate of Ischemic Terminals. Journal of Neuroscience, 2009, 29, 3974-3980.	3.6	1,376
2	Neuronal Diversity in GABAergic Long-Range Projections from the Hippocampus. Journal of Neuroscience, 2007, 27, 8790-8804.	3.6	304
3	Ivy Cells: A Population of Nitric-Oxide-Producing, Slow-Spiking GABAergic Neurons and Their Involvement in Hippocampal Network Activity. Neuron, 2008, 57, 917-929.	8.1	221
4	Cellular architecture of the mouse hippocampus: A quantitative aspect of chemically defined GABAergic neurons with stereology. Neuroscience Research, 2006, 56, 229-245.	1.9	123
5	Topographic differences in adult neurogenesis in the mouse hippocampus: A stereologyâ€based study using endogenous markers. Hippocampus, 2011, 21, 467-480.	1.9	111
6	Quantitative analysis of GABAergic neurons in the mouse hippocampus, with optical disector using confocal laser scanning microscope. Brain Research, 1998, 814, 55-70.	2.2	104
7	Immunocytochemical characterization of hippocamposeptal projecting GABAergic nonprincipal neurons in the mouse brain: a retrograde labeling study. Brain Research, 2002, 945, 219-231.	2.2	103
8	Patterns of expression of calcium binding proteins and neuronal nitric oxide synthase in different populations of hippocampal GABAergic neurons in mice. Journal of Comparative Neurology, 2002, 449, 1-25.	1.6	86
9	Spatial arrangement of microglia in the mouse hippocampus: A stereological study in comparison with astrocytes. Glia, 2007, 55, 1334-1347.	4.9	78
10	Parvalbumin is expressed in glutamatergic and GABAergic corticostriatal pathway in mice. Journal of Comparative Neurology, 2004, 477, 188-201.	1.6	75
11	Stereological estimation of numerical densities of glutamatergic principal neurons in the mouse hippocampus. Hippocampus, 2010, 20, 829-840.	1.9	71
12	Decline in adult neurogenesis during aging follows a topographic pattern in the mouse hippocampus. Journal of Comparative Neurology, 2011, 519, 451-466.	1.6	71
13	Patterns of expression of neuropeptides in GABAergic nonprincipal neurons in the mouse hippocampus: Quantitative analysis with optical disector. Journal of Comparative Neurology, 2003, 461, 333-349.	1.6	65
14	Colocalization of parvalbumin and somatostatin-like immunoreactivity in the mouse hippocampus: Quantitative analysis with optical disector. Journal of Comparative Neurology, 2000, 428, 377-388.	1.6	64
15	Structural organization of long-range GABAergic projection system of the hippocampus. Frontiers in Neuroanatomy, 2009, 3, 13.	1.7	62
16	Novel objective classification of reactive microglia following hypoglossal axotomy using hierarchical cluster analysis. Journal of Comparative Neurology, 2013, 521, 1184-1201.	1.6	53
17	lonic currents underlying rhythmic bursting of ventral mossy cells in the developing mouse dentate gyrus. European Journal of Neuroscience, 2003, 17, 1338-1354.	2.6	47
18	Molecular heterogeneity of aggrecanâ€based perineuronal nets around five subclasses of parvalbuminâ€expressing neurons in the mouse hippocampus. Journal of Comparative Neurology, 2017, 525, 1234-1249.	1.6	46

#	Article	IF	CITATIONS
19	Potential link between antidepressant-like effects of ketamine and promotion of adult neurogenesis in the ventral hippocampus of mice. Neuropharmacology, 2019, 158, 107710.	4.1	44
20	Reduced synaptic activity precedes synaptic stripping in vagal motoneurons after axotomy. Glia, 2008, 56, 1448-1462.	4.9	41
21	Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicology and Applied Pharmacology, 2019, 363, 98-110.	2.8	40
22	Quantitative analysis of neuronal nitric oxide synthase-immunoreactive neurons in the mouse hippocampus with optical disector. Journal of Comparative Neurology, 1999, 410, 398-412.	1.6	38
23	Reduction of Iba1-expressing microglial process density in the hippocampus following electroconvulsive shock. Experimental Neurology, 2008, 212, 440-447.	4.1	34
24	Comparative morphometric analysis of microglia in the spinal cord of <scp>SOD</scp> 1 ^{C93A} transgenic mouse model of amyotrophic lateral sclerosis. European Journal of Neuroscience, 2016, 43, 1340-1351.	2.6	30
25	Increased Synthesis of Chondroitin Sulfate Proteoglycan Promotes Adult Hippocampal Neurogenesis in Response to Enriched Environment. Journal of Neuroscience, 2018, 38, 8496-8513.	3.6	30
26	Morphometric multivariate analysis of GABAergic neurons containing calretinin and neuronal nitric oxide synthase in the mouse hippocampus. Brain Research, 2001, 900, 195-204.	2.2	23
27	Using comparative anatomy in the axotomy model to identify distinct roles for microglia and astrocytes in synaptic stripping. Neuron Glia Biology, 2011, 7, 55-66.	1.6	23
28	S100A6 (calcyclin) is a novel marker of neural stem cells and astrocyte precursors in the subgranular zone of the adult mouse hippocampus. Hippocampus, 2014, 24, 89-101.	1.9	23
29	Alterations in neuronal survival and glial reactions after axotomy by ceftriaxone and minocycline in the mouse hypoglossal nucleus. Neuroscience Letters, 2011, 504, 295-300.	2.1	21
30	Subclassâ€specific formation of perineuronal nets around parvalbuminâ€expressing GABAergic neurons in Ammon's horn of the mouse hippocampus. Journal of Comparative Neurology, 2015, 523, 790-804.	1.6	21
31	Aging affects new cell production in the adult hippocampus: A quantitative anatomic review. Journal of Chemical Neuroanatomy, 2016, 76, 64-72.	2.1	20
32	Neuronal circuitâ€dependent alterations in expression of two isoforms of glutamic acid decarboxylase in the hippocampus following electroconvulsive shock: A stereologyâ€based study. Hippocampus, 2009, 19, 1130-1141.	1.9	19
33	Compartmentation of the mouse cerebellar cortex by neuronal calcium sensor-1. Journal of Comparative Neurology, 2003, 458, 412-424.	1.6	17
34	Cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein in middle-aged female mice. Neuropharmacology, 2016, 111, 92-106.	4.1	17
35	Differential activation of neuronal and glial <scp>STAT</scp> 3 in the spinal cord of the <i><scp>SOD</scp>1</i> ^{<i>G93A</i>} mouse model of amyotrophic lateral sclerosis. European Journal of Neuroscience, 2017, 46, 2001-2014.	2.6	17
36	Alterations in expression of Catâ€315 epitope of perineuronal nets during normal ageing, and its modulation by an openâ€channel NMDA receptor blocker, memantine. Journal of Comparative Neurology, 2017, 525, 2035-2049.	1.6	15

#	Article	IF	CITATIONS
37	Late postnatal shifts of parvalbumin and nitric oxide synthase expression within the GABAergic and glutamatergic phenotypes of inferior colliculus neurons. Journal of Comparative Neurology, 2017, 525, 868-884.	1.6	15
38	Modulation of neuropathology and cognitive deficits by lipopolysaccharide preconditioning in a mouse pilocarpine model of status epilepticus. Neuropharmacology, 2020, 176, 108227.	4.1	14
39	Cortical GABAergic neurons: stretching it remarks, main conclusions and discussion. Frontiers in Neuroanatomy, 2010, 4, 7.	1.7	11
40	Subclass imbalance of parvalbumin-expressing GABAergic neurons in the hippocampus of a mouse ketamine model for schizophrenia, with reference to perineuronal nets. Schizophrenia Research, 2021, 229, 80-93.	2.0	10
41	Age-related differences in oligodendrogenesis across the dorsal-ventral axis of the mouse hippocampus. Hippocampus, 2014, 24, 1017-1029.	1.9	9
42	Expression and possible role of neuronal calcium sensor-1 in the cerebellum. Cerebellum, 2004, 3, 83-88.	2.5	7
43	Selective apoptosis induction in the hippocampal mossy fiber pathway by exposure to CT105, the C-terminal fragment of Alzheimer's amyloid precursor protein. Brain Research, 2009, 1249, 68-78.	2.2	7
44	The expression of keratan sulfate reveals a unique subset of microglia in the mouse hippocampus after pilocarpineâ€induced status epileptics. Journal of Comparative Neurology, 2020, 528, 18-35.	1.6	7
45	Differential involvement of vesicular and glial glutamate transporters around spinal α-motoneurons in the pathogenesis of SOD1C93A mouse model of amyotrophic lateral sclerosis. Neuroscience, 2017, 356, 114-124.	2.3	6
46	Signal Transducer and Activator of Transcription 3 Activation in Hippocampal Neural Stem Cells and Cognitive Deficits in Mice Following Short-term Cuprizone Exposure. Neuroscience, 2021, 472, 90-102.	2.3	6
47	Phytoestrogen genistein modulates neuron–microglia signaling in a mouse model of chronic social defeat stress. Neuropharmacology, 2022, 206, 108941.	4.1	6
48	Timeâ€dependent localization of high―and lowâ€sulfated keratan sulfates in the song nuclei of developing zebra finches. European Journal of Neuroscience, 2015, 42, 2716-2725.	2.6	5
49	A unique subtype of ramified microglia associated with synapses in the rat hippocampus. European Journal of Neuroscience, 2021, 54, 4740-4754.	2.6	5
50	Upregulation of Vesicular Glutamate Transporter 2 and STAT3 Activation in the Spinal Cord of Mice Receiving 3,3′-Iminodipropionitrile. Neurotoxicity Research, 2018, 33, 768-780.	2.7	4
51	PSA-NCAM Colocalized with Cholecystokinin-Expressing Cells in the Hippocampus Is Involved in Mediating Antidepressant Efficacy. Journal of Neuroscience, 2020, 40, 825-842.	3.6	4
52	Alleviation of cognitive deficits via upregulation of chondroitin sulfate biosynthesis by lignan sesamin in a mouse model of neuroinflammation. Journal of Nutritional Biochemistry, 2022, 108, 109093.	4.2	4
53	Chondroitin sulfate proteoglycan is a potential target of memantine to improve cognitive function via the promotion of adult neurogenesis. British Journal of Pharmacology, 2022, 179, 4857-4877.	5.4	4
54	Promotion of synaptogenesis and neural circuit development by exosomes. Annals of Translational Medicine, 2019, 7, S323-S323.	1.7	3

#	Article	IF	CITATIONS
55	Aging of hippocampal neurogenesis and soy isoflavone. Oncotarget, 2016, 7, 83835-83836.	1.8	3
56	Insights into Aging of the Hippocampus: A View from the Topographic Differentiation. , 2015, , 243-256.		0
57	Alterations in expression of Catâ€315 epitope of perineuronal nets during normal ageing, and its modulation by an openâ€channel NMDA receptor blocker, memantine. Journal of Comparative Neurology, 2017, 525, spc1-spc1.	1.6	Ο
58	Potential involvement of perineuronal nets in brain aging. , 2021, , 163-172.		0
59	Potential Involvement of Keratan Sulfate in the Heterogeneity of Microglia. Trends in Glycoscience and Glycotechnology, 2021, 33, J135-J139.	0.1	Ο
60	Potential Involvement of Keratan Sulfate in the Heterogeneity of Microglia. Trends in Glycoscience and Glycotechnology, 2021, 33, E135-E139.	0.1	0