Shan Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6029026/publications.pdf

Version: 2024-02-01

471509 501196 2,657 28 17 28 h-index citations g-index papers 30 30 30 3967 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Exfoliation of Covalent Organic Frameworks into Few-Layer Redox-Active Nanosheets as Cathode Materials for Lithium-Ion Batteries. Journal of the American Chemical Society, 2017, 139, 4258-4261.	13.7	775
2	Tuning the Luminescence of Metal–Organic Frameworks for Detection of Energetic Heterocyclic Compounds. Journal of the American Chemical Society, 2014, 136, 15485-15488.	13.7	390
3	Photoinduced Postsynthetic Polymerization of a Metal–Organic Framework toward a Flexible Standâ€Alone Membrane. Angewandte Chemie - International Edition, 2015, 54, 4259-4263.	13.8	235
4	Partitioning MOF-5 into Confined and Hydrophobic Compartments for Carbon Capture under Humid Conditions. Journal of the American Chemical Society, 2016, 138, 10100-10103.	13.7	214
5	Encapsulating [Mo ₃ S ₁₃] ^{2â^'} clusters in cationic covalent organic frameworks: enhancing stability and recyclability by converting a homogeneous photocatalyst to a heterogeneous photocatalyst. Chemical Communications, 2018, 54, 13563-13566.	4.1	172
6	Explosives in the Cage: Metal–Organic Frameworks for Highâ€Energy Materials Sensing and Desensitization. Advanced Materials, 2017, 29, 1701898.	21.0	127
7	Metalâ€Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability. Advanced Materials, 2016, 28, 5837-5843.	21.0	108
8	Metal–organic framework-derived Co ₉ S ₈ embedded in N, O and S-tridoped carbon nanomaterials as an efficient oxygen bifunctional electrocatalyst. Journal of Materials Chemistry A, 2019, 7, 7389-7395.	10.3	100
9	Integrating Single Atoms with Different Microenvironments into One Porous Organic Polymer for Efficient Photocatalytic CO ₂ Reduction. Advanced Materials, 2021, 33, e2101568.	21.0	96
10	<i>o</i> -Carborane-Based and Atomically Precise Metal Clusters as Hypergolic Materials. Journal of the American Chemical Society, 2020, 142, 12010-12014.	13.7	68
11	A Heat-Resistant and Energetic Metal–Organic Framework Assembled by Chelating Ligand. ACS Applied Materials & Company (Interfaces, 2017, 9, 37542-37547.	8.0	55
12	Prefabricated covalent organic framework nanosheets with double vacancies: anchoring Cu for highly efficient photocatalytic H ₂ evolution. Journal of Materials Chemistry A, 2020, 8, 25094-25100.	10.3	50
13	Covalent organic frameworks: a platform for the experimental establishment of the influence of intermolecular distance on phosphorescence. Journal of Materials Chemistry C, 2018, 6, 5369-5374.	5.5	43
14	Silver Clusterâ€Porphyrinâ€Assembled Materials as Advanced Bioprotective Materials for Combating Superbacteria. Advanced Science, 2022, 9, e2103721.	11.2	32
15	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie - International Edition, 2022, 61, e202114538.	13.8	27
16	A Tale of Copper Coordination Frameworks: Controlled Singleâ€Crystalâ€ŧoâ€Singleâ€Crystal Transformations and Their Catalytic CH Bond Activation Properties. Chemistry - A European Journal, 2015, 21, 13894-13899.	3.3	20
17	Irradiation technology: An effective and promising strategy for eliminating food allergens. Food Research International, 2021, 148, 110578.	6.2	17
18	Fabrication of silver chalcogenolate cluster hybrid membranes with enhanced structural stability and luminescence efficiency. Chemical Communications, 2019, 55, 14677-14680.	4.1	16

#	Article	IF	CITATIONS
19	Electrochemical sensing platform for the detection of methyl parathion applying highly biocompatible non-covalent functionalized phosphonium-based ionic liquid@MWCNTs hybrid to immobilize hemoglobin. Biosensors and Bioelectronics, 2022, 197, 113755.	10.1	14
20	Aqueous media ultra-sensitive detection of antibiotics via highly stable luminescent 3D Cadmium-based MOF. New Journal of Chemistry, 2021, 45, 20887-20894.	2.8	10
21	Hydrazone connected stable luminescent covalent–organic polymer for ultrafast detection of nitro-explosives. RSC Advances, 2021, 11, 39270-39277.	3.6	9
22	Programming a Metal–Organic Framework toward Excellent Hypergolicity. ACS Applied Materials & Lamp; Interfaces, 2022, 14, 23909-23915.	8.0	9
23	Explosives: Metal-Organic Framework Templated Synthesis of Copper Azide as the Primary Explosive with Low Electrostatic Sensitivity and Excellent Initiation Ability (Adv. Mater. 28/2016). Advanced Materials, 2016, 28, 5766-5766.	21.0	6
24	Electropolymerization of Metal Clusters Establishing a Versatile Platform for Enhanced Catalysis Performance. Angewandte Chemie, 2022, 134 , .	2.0	5
25	A facile method to prepare energetic materials (EMs). RSC Advances, 2017, 7, 48161-48165.	3.6	4
26	Design and synthesis of metal hydroxide three-dimensional inorganic cationic frameworks. Dalton Transactions, 2018, 47, 3339-3345.	3.3	1
27	Titelbild: Photoinduced Postsynthetic Polymerization of a Metal-Organic Framework toward a Flexible Stand-Alone Membrane (Angew. Chem. 14/2015). Angewandte Chemie, 2015, 127, 4199-4199.	2.0	0
28	Construction of highly energetic metal-organic frameworks with a nitrobenzene derivative. CrystEngComm, $0, , .$	2.6	0