List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6028855/publications.pdf Version: 2024-02-01

		9264	7160
267	25,910	74	153
papers	citations	h-index	g-index
281	281	281	33273
all docs	docs citations	times ranked	citing authors

EVAN T KELLED

#	Article	IF	CITATIONS
1	A Bioreactor for 3D In Vitro Modeling of the Mechanical Stimulation of Osteocytes. Frontiers in Bioengineering and Biotechnology, 2022, 10, 797542.	4.1	1
2	Differential immune landscapes in appendicular versus axial skeleton. PLoS ONE, 2022, 17, e0267642.	2.5	2
3	Integrated Workflow for the Label-Free Isolation and Genomic Analysis of Single Circulating Tumor Cells in Pancreatic Cancer. International Journal of Molecular Sciences, 2022, 23, 7852.	4.1	2
4	â€~Educated' Osteoblasts Reduce Osteoclastogenesis in a Bone-Tumor Mimetic Microenvironment. Cancers, 2021, 13, 263.	3.7	2
5	Extracellular Vesicles and Bone-Associated Cancer. Current Osteoporosis Reports, 2021, 19, 223-229.	3.6	4
6	Cigarette smoke-associated inflammation impairs bone remodeling through NFκB activation. Journal of Translational Medicine, 2021, 19, 163.	4.4	12
7	IgV somatic mutation of human anti–SARS-CoV-2 monoclonal antibodies governs neutralization and breadth of reactivity. JCl Insight, 2021, 6, .	5.0	13
8	An infection-induced RhoB-Beclin 1-Hsp90 complex enhances clearance of uropathogenic Escherichia coli. Nature Communications, 2021, 12, 2587.	12.8	14
9	Effects of Analgesics on Tumor Growth in Mouse Models of Prostate Cancer Bone Metastasis. Journal of the American Association for Laboratory Animal Science, 2021, 60, 341-348.	1.2	Ο
10	Transcription factor network analysis based on single cell RNA-seq identifies that Trichostatin-a reverses docetaxel resistance in prostate Cancer. BMC Cancer, 2021, 21, 1316.	2.6	6
11	Pheno-SELEX: Engineering Anti-Metastatic Aptamers through Targeting the Invasive Phenotype Using Systemic Evolution of Ligands by Exponential Enrichment. Bioengineering, 2021, 8, 212.	3.5	2
12	Multiple Roles of Osteocytes in Bone-Associated Cancers. , 2020, , 219-224.		0
13	Notch3 promotes prostate cancer-induced bone lesion development via MMP-3. Oncogene, 2020, 39, 204-218.	5.9	29
14	Simultaneous Single Cell Gene Expression and EGFR Mutation Analysis of Circulating Tumor Cells Reveals Distinct Phenotypes in NSCLC. Advanced Biology, 2020, 4, e2000110.	3.0	12
15	Curcumin Nanoparticles and Their Cytotoxicity in Docetaxel-Resistant Castration-Resistant Prostate Cancer Cells. Biomedicines, 2020, 8, 253.	3.2	25
16	Single-Cell Transcriptomics Analysis Identifies Nuclear Protein 1 as a Regulator of Docetaxel Resistance in Prostate Cancer Cells. Molecular Cancer Research, 2020, 18, 1290-1301.	3.4	25
17	Cellular, transcriptomic and isoform heterogeneity of breast cancer cell line revealed by full-length single-cell RNA sequencing. Computational and Structural Biotechnology Journal, 2020, 18, 676-685.	4.1	26
18	Integrative differential expression and gene set enrichment analysis using summary statistics for scRNA-seq studies. Nature Communications, 2020, 11, 1585.	12.8	43

#	Article	IF	CITATIONS
19	Osteoclast-mediated bone resorption is controlled by a compensatory network of secreted and membrane-tethered metalloproteinases. Science Translational Medicine, 2020, 12, .	12.4	85
20	Cytotoxic necrotizing factor 1 promotes bladder cancer angiogenesis through activating RhoC. FASEB Journal, 2020, 34, 7927-7940.	0.5	20
21	Efficacy and Effect of Cabozantinib on Bone Metastases in Treatment-naive Castration-resistant Prostate Cancer. Clinical Genitourinary Cancer, 2020, 18, 332-339.e2.	1.9	5
22	Photoacoustic spectral analysis at ultraviolet wavelengths for characterizing the Gleason grades of prostate cancer. Optics Letters, 2020, 45, 6042.	3.3	7
23	Knockdown of Notch1 inhibits nasopharyngeal carcinoma cell growth and metastasis via downregulation of CCL2, CXCL16, and uPA. Molecular Carcinogenesis, 2019, 58, 1886-1896.	2.7	15
24	Macrofluidic recirculating model of skeletal metastasis. Scientific Reports, 2019, 9, 14979.	3.3	4
25	SNV identification from single-cell RNA sequencing data. Human Molecular Genetics, 2019, 28, 3569-3583.	2.9	22
26	Primary prostate cancer educates bone stroma through exosomal pyruvate kinase M2 to promote bone metastasis. Journal of Experimental Medicine, 2019, 216, 2883-2899.	8.5	122
27	A surgical orthotopic approach for studying the invasive progression of human bladder cancer. Nature Protocols, 2019, 14, 738-755.	12.0	19
28	Targeting cathepsin K diminishes prostate cancer establishment and growth in murine bone. Journal of Cancer Research and Clinical Oncology, 2019, 145, 1999-2012.	2.5	29
29	Targeted Notch1 inhibition with a Notch1 antibody, OMPâ€A2G1, decreases tumor growth in two murine models of prostate cancer in association with differing patterns of DNA damage response gene expression. Journal of Cellular Biochemistry, 2019, 120, 16946-16955.	2.6	4
30	Prostate cancer promotes a vicious cycle of bone metastasis progression through inducing osteocytes to secrete GDF15 that stimulates prostate cancer growth and invasion. Oncogene, 2019, 38, 4540-4559.	5.9	68
31	Abstract 2784: Driver genes network promotes mesenchymal to epithelial transition and organ-specific metastasis. , 2019, , .		0
32	Mindful exercise versus non-mindful exercise for schizophrenia: A systematic review and meta-analysis of randomized controlled trials. Complementary Therapies in Clinical Practice, 2018, 32, 17-24.	1.7	32
33	Bone Marrow Microenvironment as a Regulator and Therapeutic Target for Prostate Cancer Bone Metastasis. Calcified Tissue International, 2018, 102, 152-162.	3.1	29
34	Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles, 2018, 7, 1535750.	12.2	6,961
35	Targeted DNA and RNA Sequencing of Paired Urothelial and Squamous Bladder Cancers Reveals Discordant Genomic and Transcriptomic Events and Unique Therapeutic Implications. European Urology, 2018, 74, 741-753.	1.9	54
36	Novel CIL-102 derivatives as potential therapeutic agents for docetaxel-resistant prostate cancer. Cancer Letters, 2018, 436, 96-108.	7.2	7

#	Article	IF	CITATIONS
37	The Use of Mature Zebrafish (Danio rerio) as a Model for Human Aging and Disease. , 2018, , 351-359.		7
38	Tumor microenvironment promotes prostate cancer cell dissemination via the Akt/mTOR pathway. Oncotarget, 2018, 9, 9206-9218.	1.8	13
39	Establishment and characterization of two cabazitaxel-resistant prostate cancer cell lines. Oncotarget, 2018, 9, 16185-16196.	1.8	26
40	Crosstalk Between Androgen-sensitive and Androgen-insensitive Prostate Cancer Cells. Anticancer Research, 2018, 38, 2045-2055.	1.1	5
41	Prostate cancer tends to metastasize in the bone-mimicking microenvironment via activating NF-kB signaling. Journal of Biomedical Research, 2018, 32, 343.	1.6	5
42	Abstract 5896: Downregulation of calcium-sensing receptor enhances MET-mediated prostate cancer chemosensitivity. , 2018, , .		0
43	Abstract 996: Host-derived MCP-1 dictates prostate cancer skeletal metastasis in vivo. , 2018, , .		0
44	Litchi seed extracts diminish prostate cancer progression via induction of apoptosis and attenuation of EMT through Akt/GSK-3β signaling. Scientific Reports, 2017, 7, 41656.	3.3	58
45	Metformin targets multiple signaling pathways in cancer. Chinese Journal of Cancer, 2017, 36, 17.	4.9	115
46	Bone Microenvironment Changes in Latexin Expression Promote Chemoresistance. Molecular Cancer Research, 2017, 15, 457-466.	3.4	10
47	Fibulin-3 promotes muscle-invasive bladder cancer. Oncogene, 2017, 36, 5243-5251.	5.9	34
48	Abituzumab Targeting of αV-Class Integrins Inhibits Prostate Cancer Progression. Molecular Cancer Research, 2017, 15, 875-883.	3.4	29
49	Down-regulation of E-cadherin enhances prostate cancer chemoresistance via Notch signaling. Chinese Journal of Cancer, 2017, 36, 35.	4.9	63
50	Immune mediators in the tumor microenvironment of prostate cancer. Chinese Journal of Cancer, 2017, 36, 29.	4.9	38
51	An integrative model of prostate cancer interaction with the bone microenvironment. Mathematical Biosciences, 2017, 294, 1-14.	1.9	22
52	High-Throughput Microfluidic Labyrinth for the Label-free Isolation of Circulating Tumor Cells. Cell Systems, 2017, 5, 295-304.e4.	6.2	88
53	Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42–PAK1 axis. Journal of Pathology, 2017, 243, 208-219.	4.5	37
54	HER2 and EGFR Overexpression Support Metastatic Progression of Prostate Cancer to Bone. Cancer Research, 2017, 77, 74-85.	0.9	137

#	Article	IF	CITATIONS
55	Analysis of Integrin Alpha2Beta1 (α2β1) Expression as a Biomarker of Skeletal Metastasis. Biomarkers in Disease, 2017, , 487-506.	0.1	3
56	Apoptosis-induced CXCL5 accelerates inflammation and growth of prostate tumor metastases in bone. Journal of Clinical Investigation, 2017, 128, 248-266.	8.2	103
57	Photoacoustic physio-chemical analysis for prostate cancer diagnosis (Conference Presentation). , 2017, , .		0
58	Abstract 85: Establishment of cabazitaxel-resistant prostate cancer cell lines. , 2017, , .		0
59	Abstract 1462: Exosome-derived miR-429 contributes to prostate cancer chemoresistance. , 2017, , .		0
60	Abstract 4939: Activation of GSK3β/β-catenin pathway promotes organ-specific metastasis in prostate cancer. , 2017, , .		0
61	Effects of Lovastatin on MDA-MB-231 Breast Cancer Cells: An Antibody Microarray Analysis. Journal of Cancer, 2016, 7, 192-199.	2.5	29
62	Skp2 is associated with paclitaxel resistance in prostate cancer cells. Oncology Reports, 2016, 36, 559-566.	2.6	30
63	Raman microscopy of bladder cancer cells expressing green fluorescent protein. Journal of Biomedical Optics, 2016, 21, 115001.	2.6	6
64	Snail/Slug binding interactions with YAP/TAZ control skeletal stem cell self-renewal and differentiation. Nature Cell Biology, 2016, 18, 917-929.	10.3	175
65	Phase II studies of two different schedules of dasatinib in bone metastasis predominant metastatic breast cancer: SWOG S0622. Breast Cancer Research and Treatment, 2016, 159, 87-95.	2.5	35
66	Providing prostate cancer survivorship care in Japan: Implications from the USA care model. International Journal of Urology, 2016, 23, 906-915.	1.0	2
67	Exosome-derived microRNAs contribute to prostate cancer chemoresistance. International Journal of Oncology, 2016, 49, 838-846.	3.3	74
68	Effects of zoledronic acid on bone fusion in osteoporotic patients after lumbar fusion. Osteoporosis International, 2016, 27, 1469-1476.	3.1	63
69	Mechanistic Support for Combined MET and AR Blockade in Castration-Resistant Prostate Cancer. Neoplasia, 2016, 18, 1-9.	5.3	25
70	Role of Runx2 phosphorylation in prostate cancer and association with metastatic disease. Oncogene, 2016, 35, 366-376.	5.9	56
71	IGFBP6 is a novel nasopharyngeal carcinoma prognostic biomarker. Oncotarget, 2016, 7, 68140-68150.	1.8	10
72	Analysis of Integrin Alpha2Beta1 (α2β1) Expression as a Biomarker of Skeletal Metastasis. Exposure and Health, 2016, , 1-20.	4.9	0

#	Article	IF	CITATIONS
73	Abstract 965: Exosome-derived microRNAs contributes to prostate cancer chemoresistance. , 2016, , .		Ο
74	Abstract 1567: Prostate cancer-derived exosomes alter the metabolic microenvironment of bone marrow pre-metastatic niche through PKM2 to promote bone metastasis. , 2016, , .		0
75	Abstract 3307: Label-free high throughput microfluidic device for the isolation and single cell multiplex gene expression analysis of circulating tumor cells from breast cancer patients. , 2016, , .		0
76	Abstract 692: Identifying genes that regulate bladder cancer progression and invasion. , 2016, , .		0
77	Wnt3a: functions and implications in cancer. Chinese Journal of Cancer, 2015, 34, 554-62.	4.9	72
78	Micro/Nanostructures and Mechanical Properties of Trabecular Bone in Ovariectomized Rats. International Journal of Endocrinology, 2015, 2015, 1-10.	1.5	11
79	Annexin 2–CXCL12 Interactions Regulate Metastatic Cell Targeting and Growth in the Bone Marrow. Molecular Cancer Research, 2015, 13, 197-207.	3.4	35
80	Translational progress on tumor biomarkers. Thoracic Cancer, 2015, 6, 665-671.	1.9	11
81	Raf kinase inhibitor protein (RKIP) deficiency decreases latency of tumorigenesis and increases metastasis in a murine genetic model of prostate cancer. Prostate, 2015, 75, 292-302.	2.3	17
82	Notch Pathway Inhibition Using PF-03084014, a γ-Secretase Inhibitor (CSI), Enhances the Antitumor Effect of Docetaxel in Prostate Cancer. Clinical Cancer Research, 2015, 21, 4619-4629.	7.0	73
83	Tumor-Induced Pressure in the Bone Microenvironment Causes Osteocytes to Promote the Growth of Prostate Cancer Bone Metastases. Cancer Research, 2015, 75, 2151-2158.	0.9	123
84	Extracellular Vesicle-Mediated Reversal of Paclitaxel Resistance in Prostate Cancer. Critical Reviews in Oncogenesis, 2015, 20, 407-417.	0.4	13
85	Review of Animal Models of Prostate Cancer Bone Metastasis. Veterinary Sciences, 2014, 1, 16-39.	1.7	19
86	Mangiferin Attenuates Th1/Th2 Cytokine Imbalance in an Ovalbumin-Induced Asthmatic Mouse Model. PLoS ONE, 2014, 9, e100394.	2.5	59
87	A review on the diagnosis and treatment of hepatocellular carcinoma with a focus on the role of Wnts and the dickkopf family of Wnt inhibitors. Journal of Hepatocellular Carcinoma, 2014, 1, 1.	3.7	9
88	Targeting the <scp>N</scp> otch signaling pathway in cancer therapeutics. Thoracic Cancer, 2014, 5, 473-486.	1.9	37
89	Parathyroid hormone-related protein inhibits DKK1 expression through c-Jun-mediated inhibition of β-catenin activation of the DKK1 promoter in prostate cancer. Oncogene, 2014, 33, 2464-2477.	5.9	18
90	Polarization of Prostate Cancer-associated Macrophages Is Induced by Milk Fat Globule-EGF Factor 8 (MFG-E8)-mediated Efferocytosis. Journal of Biological Chemistry, 2014, 289, 24560-24572.	3.4	140

#	Article	IF	CITATIONS
91	Osteocytes Serve as a Progenitor Cell of Osteosarcoma. Journal of Cellular Biochemistry, 2014, 115, 1420-1429.	2.6	31
92	Doubleâ€blind, randomized, phase 2 trial of maintenance sunitinib versus placebo after response to chemotherapy in patients with advanced urothelial carcinoma. Cancer, 2014, 120, 692-701.	4.1	91
93	Cabozantinib Inhibits Prostate Cancer Growth and Prevents Tumor-Induced Bone Lesions. Clinical Cancer Research, 2014, 20, 617-630.	7.0	75
94	Recent advances in bone-targeted therapies of metastatic prostate cancer. Cancer Treatment Reviews, 2014, 40, 730-738.	7.7	48
95	Abstract 1: Interaction of prostate cancer cells with tumor microenvironment promotes EMT and DTCs activation. , 2014, , .		1
96	Survey of Raf Kinase Inhibitor Protein (RKIP) in Multiple Cancer Types. Critical Reviews in Oncogenesis, 2014, 19, 455-468.	0.4	51
97	Extracellular vesicle-mediated reversal of taxane resistance and the malignant phenotype in prostate cancer Journal of Clinical Oncology, 2014, 32, e16028-e16028.	1.6	0
98	Abstract 617: Repression of cell proliferation and androgen receptor activity by 2'-hydroxyflavanone in prostate cancer cells. , 2014, , .		0
99	Abstract 772: CCL2 regulates EMT-mediated chemo-resistance in prostate cancer. , 2014, , .		0
100	Abstract 3198: Extract from Scutellaria baicalensis Georgi inhibits prostate cancer growth in bone. , 2014, , .		0
101	SOD3 acts as a tumor suppressor in PC-3 prostate cancer cells via hydrogen peroxide accumulation. Anticancer Research, 2014, 34, 2821-31.	1.1	23
102	Exogenous SPARC Suppresses Proliferation and Migration of Prostate Cancer by Interacting With Integrin β1. Prostate, 2013, 73, 1159-1170.	2.3	38
103	Integrin alpha2beta1 (α2β1) promotes prostate cancer skeletal metastasis. Clinical and Experimental Metastasis, 2013, 30, 569-578.	3.3	88
104	Activation of the Wnt Pathway through AR79, a GSK3β Inhibitor, Promotes Prostate Cancer Growth in Soft Tissue and Bone. Molecular Cancer Research, 2013, 11, 1597-1610.	3.4	29
105	A novel canine model for prostate cancer. Prostate, 2013, 73, 952-959.	2.3	38
106	Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nature Communications, 2013, 4, 1795.	12.8	342
107	MT1-MMP-Dependent Control of Skeletal Stem Cell Commitment via a β1-Integrin/YAP/TAZ Signaling Axis. Developmental Cell, 2013, 25, 402-416.	7.0	219
108	Stromal cells in tumor microenvironment and breast cancer. Cancer and Metastasis Reviews, 2013, 32, 303-315.	5.9	536

#	Article	IF	CITATIONS
109	Radium-223: a new treatment option for bone-metastatic CRPC. Nature Reviews Urology, 2013, 10, 630-631.	3.8	1
110	Mechanisms of Metastatic Tumor Dormancy. Journal of Clinical Medicine, 2013, 2, 136-150.	2.4	40
111	Detection and Isolation of Human Disseminated Tumor Cells in the Murine Bone Marrow Stem Cell Niche. Methods in Molecular Biology, 2013, 1035, 207-215.	0.9	2
112	SPDEF: a molecular switch for E-cadherin expression that promotes prostate cancer metastasis. Asian Journal of Andrology, 2013, 15, 584-585.	1.6	7
113	Understanding and Targeting Osteoclastic Activity in Prostate Cancer Bone Metastases. Current Molecular Medicine, 2013, 13, 626-639.	1.3	55
114	Evaluation of aÂnovel irreversible pan-HER inhibitor in bladder cancer models Journal of Clinical Oncology, 2013, 31, 253-253.	1.6	0
115	Abstract 3945: IKK-Epsilon, a novel factor identified by proteomics, contributes to prostate cancer cell-induced osteoclast activityin vitro , 2013, , .		0
116	Repression of cell proliferation and androgen receptor activity in prostate cancer cells by 2'-hydroxyflavanone. Anticancer Research, 2013, 33, 4453-61.	1.1	8
117	Disseminated Prostate Cancer Cells Can Instruct Hematopoietic Stem and Progenitor Cells to Regulate Bone Phenotype. Molecular Cancer Research, 2012, 10, 282-292.	3.4	41
118	Regulatory T cells in the bone marrow microenvironment in patients with prostate cancer. Oncolmmunology, 2012, 1, 152-161.	4.6	123
119	Transcriptional Regulation of RKIP Expression by Androgen in Prostate Cells. Cellular Physiology and Biochemistry, 2012, 30, 1340-1350.	1.6	31
120	Raman spectroscopy of bone metastasis. Proceedings of SPIE, 2012, , .	0.8	3
121	794 HISTOTRIPSY FOCAL ABLATION OF IMPLANTED PROSTATE TUMOR IN AN ACE-1 CANINE CANCER MODEL. Journal of Urology, 2012, 187, .	0.4	0
122	Wnt and Wnt inhibitors in bone metastasis. BoneKEy Reports, 2012, 1, 101.	2.7	29
123	Histotripsy Focal Ablation of Implanted Prostate Tumor in an ACE-1 Canine Cancer Model. Journal of Urology, 2012, 188, 1957-1964.	0.4	45
124	Prevalence of Prostate Cancer Metastases after Intravenous Inoculation Provides Clues into the Molecular Basis of Dormancy in the Bone Marrow Microenvironment. Neoplasia, 2012, 14, 429-439.	5.3	51
125	Raf kinase inhibitor protein (RKIP) in cancer. Cancer and Metastasis Reviews, 2012, 31, 615-620.	5.9	76
126	Prostate Cancer and Parasitism of the Bone Hematopoietic Stem Cell Niche. Critical Reviews in Eukaryotic Gene Expression, 2012, 22, 131-148.	0.9	25

#	Article	IF	CITATIONS
127	Downâ€regulation of calcium/calmodulinâ€dependent protein kinase kinase 2 by androgen deprivation induces castrationâ€resistant prostate cancer. Prostate, 2012, 72, 1789-1801.	2.3	20
128	Polycomb Protein EZH2 Regulates Tumor Invasion via the Transcriptional Repression of the Metastasis Suppressor RKIP in Breast and Prostate Cancer. Cancer Research, 2012, 72, 3091-3104.	0.9	195
129	Abstract 2851: Cabozantinib (XL184) inhibits prostate tumor growth and bone lesion development. , 2012, , .		1
130	Randomized phase II trial of maintenance sunitinib versus placebo following response to chemotherapy (CT) for patients (pts) with advanced urothelial carcinoma (UC) Journal of Clinical Oncology, 2012, 30, 265-265.	1.6	7
131	Abstract 3794: Inhibition of prostate cancer bone metastases by the dickkopf-1 neutralizing antibody BHQ880. , 2012, , .		2
132	Abstract 944: Down-regulation of CAMKK2 by androgen deprivation induces castration-resistant prostate cancer. , 2012, , .		0
133	Abstract 841: CCL2 and interleukin-6 regulate EMT-mediated chemo-resistance in prostate cancer. , 2012, , .		1
134	ERK5 signalling in prostate cancer promotes an invasive phenotype. British Journal of Cancer, 2011, 104, 664-672.	6.4	90
135	Cilengitide (EMD 121974, NSC 707544) in asymptomatic metastatic castration resistant prostate cancer patients: a randomized phase II trial by the prostate cancer clinical trials consortium. Investigational New Drugs, 2011, 29, 1432-1440.	2.6	49
136	The PCa Tumor Microenvironment. Cancer Microenvironment, 2011, 4, 283-297.	3.1	26
137	Dickkopfâ€l (DKKâ€l) stimulated prostate cancer growth and metastasis and inhibited bone formation in osteoblastic bone metastases. Prostate, 2011, 71, 615-625.	2.3	105
138	Development of a brain metastatic canine prostate cancer cell line. Prostate, 2011, 71, 1251-1263.	2.3	32
139	Fyn Is Downstream of the HGF/MET Signaling Axis and Affects Cellular Shape and Tropism in PC3 Cells. Clinical Cancer Research, 2011, 17, 3112-3122.	7.0	32
140	Human ovarian carcinoma–associated mesenchymal stem cells regulate cancer stem cells and tumorigenesis via altered BMP production. Journal of Clinical Investigation, 2011, 121, 3206-3219.	8.2	305
141	Prostate cancer cells metastasize to the hematopoietic stem cell niche in bone. Asian Journal of Andrology, 2011, 13, 622-623.	1.6	2
142	Role of Raf Kinase Inhibitor Protein in Pathophysiology of Prostate Cancer. Forum on Immunopathological Diseases and Therapeutics, 2011, 2, 89-94.	0.1	7
143	Abstract LB-374: IGFBP-6, a novel prognostic biomarker in nasopharyngeal carcinoma (NPC) patients. , 2011, , .		0
144	Abstract 166: MicroRNA profiling analysis identify new signature of tumor-promoting M2-type macrophages. , 2011, , .		0

9

#	Article	IF	CITATIONS
145	ALDH activity indicates increased tumorigenic cells, but not cancer stem cells, in prostate cancer cell lines. In Vivo, 2011, 25, 69-76.	1.3	42
146	CTEN/tensin 4 expression induces sensitivity to paclitaxel in prostate cancer. Prostate, 2010, 70, 48-60.	2.3	24
147	Runx2 association with progression of prostate cancer in patients: mechanisms mediating bone osteolysis and osteoblastic metastatic lesions. Oncogene, 2010, 29, 811-821.	5.9	246
148	Reversal of Chemotherapy-Induced Leukopenia Using Granulocyte Macrophage Colony-Stimulating Factor Promotes Bone Metastasis That Can Be Blocked with Osteoclast Inhibitors. Cancer Research, 2010, 70, 5014-5023.	0.9	21
149	p21CIP-1/WAF-1 Induction Is Required to Inhibit Prostate Cancer Growth Elicited by Deficient Expression of the Wnt Inhibitor Dickkopf-1. Cancer Research, 2010, 70, 9916-9926.	0.9	39
150	381 ABERRANT EXTRACELLULAR SIGNAL-REGULATED PROTEIN KINASE 5 (ERK5) SIGNALLING PROMOTES CELLULAR MOTILITY AND INVASION IN PROSTATE CARCINOGENESIS. Journal of Urology, 2010, 183, .	0.4	0
151	Pathophysiology of Prostate Cancer Bone Metastasis. , 2010, , 245-254.		0
152	Change in Markers of Bone Metabolism with Chemotherapy for Advanced Prostate Cancer: Interleukin-6 Response Is a Potential Early Indicator of Response to Therapy. Journal of Interferon and Cytokine Research, 2009, 29, 105-111.	1.2	21
153	Expression of PGK1 by Prostate Cancer Cells Induces Bone Formation. Molecular Cancer Research, 2009, 7, 1595-1604.	3.4	29
154	Prostate cancer stromal cells and LNCaP cells coordinately activate the androgen receptor through synthesis of testosterone and dihydrotestosterone from dehydroepiandrosterone. Endocrine-Related Cancer, 2009, 16, 1139-1155.	3.1	59
155	EGFR ligand switch in late stage prostate cancer contributes to changes in cell signaling and bone remodeling. Prostate, 2009, 69, 528-537.	2.3	38
156	Tranilast inhibits hormone refractory prostate cancer cell proliferation and suppresses transforming growth factor β1â€associated osteoblastic changes. Prostate, 2009, 69, 1222-1234.	2.3	45
157	A bioluminescent orthotopic mouse model of human osteosarcoma that allows sensitive and rapid evaluation of new therapeutic agents In vivo. In Vivo, 2009, 23, 661-8.	1.3	14
158	RANKL acts directly on RANKâ€expressing prostate tumor cells and mediates migration and expression of tumor metastasis genes. Prostate, 2008, 68, 92-104.	2.3	165
159	RANKL inhibition is an effective adjuvant for docetaxel in a prostate cancer bone metastases model. Prostate, 2008, 68, 820-829.	2.3	25
160	Dickkopfâ€1 expression increases early in prostate cancer development and decreases during progression from primary tumor to metastasis. Prostate, 2008, 68, 1396-1404.	2.3	127
161	Breast cancerâ€derived Dickkopf1 inhibits osteoblast differentiation and osteoprotegerin expression: Implication for breast cancer osteolytic bone metastases. International Journal of Cancer, 2008, 123, 1034-1042.	5.1	104
162	Loss of Raf Kinase Inhibitory Protein Induces Radioresistance in Prostate Cancer. International Journal of Radiation Oncology Biology Physics, 2008, 72, 153-160.	0.8	52

#	Article	IF	CITATIONS
163	Snail is a repressor of RKIP transcription in metastatic prostate cancer cells. Oncogene, 2008, 27, 2243-2248.	5.9	179
164	Heat stress-induced heat shock protein 70 expression is dependent on ERK activation in zebrafish (Danio rerio) cells. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, 307-314.	1.8	50
165	Type I Collagen Receptor (α2β1) Signaling Promotes Prostate Cancer Invasion through RhoC GTPase. Neoplasia, 2008, 10, 797-803.	5.3	111
166	Parathyroid hormone mediates bone growth through the regulation of osteoblast proliferation and differentiation. Bone, 2008, 42, 806-818.	2.9	108
167	An In Vivo Mouse Model for Human Prostate Cancer Metastasis. Neoplasia, 2008, 10, 371-IN4.	5.3	74
168	Ionizing Radiation Induces Prostate Cancer Neuroendocrine Differentiation through Interplay of CREB and ATF2: Implications for Disease Progression. Cancer Research, 2008, 68, 9663-9670.	0.9	100
169	Prostate Cancer Induces Bone Metastasis through Wnt-Induced Bone Morphogenetic Protein-Dependent and Independent Mechanisms. Cancer Research, 2008, 68, 5785-5794.	0.9	131
170	Stroma-derived factor (SDF-1/CXCL12) and human tumor pathogenesis. American Journal of Physiology - Cell Physiology, 2007, 292, C987-C995.	4.6	290
171	Why should we still care about oncogenes?. Molecular Cancer Therapeutics, 2007, 6, 418-427.	4.1	13
172	A Glycolytic Mechanism Regulating an Angiogenic Switch in Prostate Cancer. Cancer Research, 2007, 67, 149-159.	0.9	140
173	Monocyte Chemotactic Protein-1 Mediates Prostate Cancer–Induced Bone Resorption. Cancer Research, 2007, 67, 3646-3653.	0.9	154
174	Cutting Edge: Opposite Effects of IL-1 and IL-2 on the Regulation of IL-17+ T Cell Pool IL-1 Subverts IL-2-Mediated Suppression. Journal of Immunology, 2007, 179, 1423-1426.	0.8	155
175	Biology and Therapeutic Basis of Prostate Cancer Bone Metastasis. , 2007, , 175-191.		0
176	PTHrP-induced MCP-1 production by human bone marrow endothelial cells and osteoblasts promotes osteoclast differentiation and prostate cancer cell proliferation and invasionin vitro. International Journal of Cancer, 2007, 121, 724-733.	5.1	60
177	CCR2 expression correlates with prostate cancer progression. Journal of Cellular Biochemistry, 2007, 101, 676-685.	2.6	115
178	New trends in the treatment of bone metastasis. Journal of Cellular Biochemistry, 2007, 102, 1095-1102.	2.6	18
179	The establishment of two paclitaxel-resistant prostate cancer cell lines and the mechanisms of paclitaxel resistance with two cell lines. Prostate, 2007, 67, 955-967.	2.3	130
180	Efficient mapping of mendelian traits in dogs through genome-wide association. Nature Genetics, 2007, 39, 1321-1328.	21.4	474

#	Article	IF	CITATIONS
181	NF-κB in breast cancer cells promotes osteolytic bone metastasis by inducing osteoclastogenesis via GM-CSF. Nature Medicine, 2007, 13, 62-69.	30.7	296
182	The role of Wnts in bone metastases. Cancer and Metastasis Reviews, 2007, 25, 551-558.	5.9	73
183	Expression of the cytoskeleton linker protein ezrin in human cancers. Clinical and Experimental Metastasis, 2007, 24, 69-78.	3.3	118
184	Issues of Aging and Geriatric Medicine: Relevance to Cancer Treatment and Hematopoietic Reconstitution. Biology of Blood and Marrow Transplantation, 2006, 12, 100-106.	2.0	7
185	The Use of Mature Zebrafish (Danio rerio) as a Model for Human Aging and Disease. , 2006, , 309-316.		1
186	Metastasis suppressor gene Raf kinase inhibitor protein (RKIP) is a novel prognostic marker in prostate cancer. Prostate, 2006, 66, 248-256.	2.3	197
187	Bisphosphonate induces apoptosis and inhibits pro-osteoclastic gene expression in prostate cancer cells. International Journal of Urology, 2006, 13, 593-600.	1.0	20
188	Phase II Evaluations of Cilengitide in Asymptomatic Patients with Androgen-Independent Prostate Cancer: Scientific Rationale and Study Design. Clinical Genitourinary Cancer, 2006, 4, 299-302.	1.9	73
189	Role of wnts in prostate cancer bone metastases. Journal of Cellular Biochemistry, 2006, 97, 661-672.	2.6	155
190	Inhibition of Interleukin-6 with CNTO328, an Anti-Interleukin-6 Monoclonal Antibody, Inhibits Conversion of Androgen-Dependent Prostate Cancer to an Androgen-Independent Phenotype in Orchiectomized Mice. Cancer Research, 2006, 66, 3087-3095.	0.9	136
191	Type I Collagen Receptor (α2β1) Signaling Promotes the Growth of Human Prostate Cancer Cells within the Bone. Cancer Research, 2006, 66, 8648-8654.	0.9	116
192	Skeletal Localization and Neutralization of the SDF-1(CXCL12)/CXCR4 Axis Blocks Prostate Cancer Metastasis and Growth in Osseous Sites In Vivo. Journal of Bone and Mineral Research, 2005, 20, 318-329.	2.8	345
193	The Bisphosphonate YM529 Inhibits Osteolytic and Osteoblastic Changes and CXCR-4–Induced Invasion in Prostate Cancer. Cancer Research, 2005, 65, 8818-8825.	0.9	62
194	The biology of a prostate cancer metastasis suppressor protein: Raf kinase inhibitor protein. Journal of Cellular Biochemistry, 2005, 94, 273-278.	2.6	81
195	Comparison of Fc-osteoprotegerin and zoledronic acid activities suggests that zoledronic acid inhibits prostate cancer in bone by indirect mechanisms. Prostate Cancer and Prostatic Diseases, 2005, 8, 253-259.	3.9	30
196	Pathogenesis and Treatment of Prostate Cancer Bone Metastases: Targeting the Lethal Phenotype. Journal of Clinical Oncology, 2005, 23, 8232-8241.	1.6	135
197	Vascular Endothelial Growth Factor Contributes to Prostate Cancer–Mediated Osteoblastic Activity. Cancer Research, 2005, 65, 10921-10929.	0.9	91
198	Prostate Cancer Cells Promote Osteoblastic Bone Metastases through Wnts. Cancer Research, 2005, 65, 7554-7560.	0.9	277

#	Article	IF	CITATIONS
199	Bone Turnover Mediates Preferential Localization of Prostate Cancer in the Skeleton. Endocrinology, 2005, 146, 1727-1736.	2.8	174
200	Bone Morphogenetic Protein-6 Promotes Osteoblastic Prostate Cancer Bone Metastases through a Dual Mechanism. Cancer Research, 2005, 65, 8274-8285.	0.9	189
201	The Adrenal Androgen Androstenediol Is Present in Prostate Cancer Tissue after Androgen Deprivation Therapy and Activates Mutated Androgen Receptor. Cancer Research, 2004, 64, 765-771.	0.9	164
202	Impact of the Mitogen-activated Protein Kinase Pathway on Parathyroid Hormone-related Protein Actions in Osteoblasts. Journal of Biological Chemistry, 2004, 279, 29121-29129.	3.4	65
203	RKIP Sensitizes Prostate and Breast Cancer Cells to Drug-induced Apoptosis. Journal of Biological Chemistry, 2004, 279, 17515-17523.	3.4	203
204	Mechanisms of Unexplained Anemia in the Nursing Home. Journal of the American Geriatrics Society, 2004, 52, 423-427.	2.6	108
205	Alzheimer's Aβ vaccination of rhesus monkeys (Macaca mulatta). Mechanisms of Ageing and Development, 2004, 125, 149-151.	4.6	31
206	In vivo visualization of aging-associated gene transcription: evidence for free radical theory of aging. Experimental Gerontology, 2004, 39, 239-247.	2.8	30
207	The role of Raf kinase inhibitor protein (RKIP) in health and disease. Biochemical Pharmacology, 2004, 68, 1049-1053.	4.4	150
208	The effect of osteoprotegerin administration on the intra-tibial growth of the osteoblastic LuCaP 23.1 prostate cancer xenograft. Clinical and Experimental Metastasis, 2004, 21, 381-387.	3.3	52
209	Osteoblasts induce prostate cancer proliferation and PSA expression through interleukin-6-mediated activation of the androgen receptor. Clinical and Experimental Metastasis, 2004, 21, 399-408.	3.3	57
210	In vivo real-time imaging of TGF-?-induced transcriptional activation of the RANK ligand gene promoter in intraosseous prostate cancer. Prostate, 2004, 59, 360-369.	2.3	42
211	Prostate cancer bone metastases promote both osteolytic and osteoblastic activity. Journal of Cellular Biochemistry, 2004, 91, 718-729.	2.6	251
212	Detection and Isolation of Circulating Tumor Cells in Urologic Cancers: A Review. Neoplasia, 2004, 6, 302-309.	5.3	53
213	The use of mature zebrafish (Danio rerio) as a model for human aging and disease. Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2004, 138, 335-341.	2.6	80
214	Raf kinase inhibitor protein: a prostate cancer metastasis suppressor gene. Cancer Letters, 2004, 207, 131-137.	7.2	76
215	Zebrafish, Killifish, Neither Fish, Both Fish?. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2004, 59, B873-B875.	3.6	4
216	Vascular Endothelial Growth Factor Contributes to the Prostate Cancer-Induced Osteoblast Differentiation Mediated by Bone Morphogenetic Protein. Cancer Research, 2004, 64, 994-999.	0.9	139

#	Article	IF	CITATIONS
217	Metastasis suppressor genes: a role for raf kinase inhibitor protein (RKIP). Anti-Cancer Drugs, 2004, 15, 663-669.	1.4	55
218	Alzheimer Aβ Vaccination of Rhesus Monkeys (Macaca Mulatta). Alzheimer Disease and Associated Disorders, 2004, 18, 44-46.	1.3	24
219	OPG, RANKL, and RANK in Cancer Metastasis: Expression and Regulation. Cancer Treatment and Research, 2004, 118, 149-172.	0.5	28
220	Characterization of C4-2 Prostate Cancer Bone Metastases and Their Response to Castration. Journal of Bone and Mineral Research, 2003, 18, 1882-1888.	2.8	40
221	Separation of retinoid-induced epidermal and dermal thickening from skin irritation. Archives of Dermatological Research, 2003, 295, 255-262.	1.9	26
222	Characterization of the heat shock response in mature zebrafish (Danio rerio). Experimental Gerontology, 2003, 38, 683-691.	2.8	70
223	Stromal factors involved in prostate carcinoma metastasis to bone. Cancer, 2003, 97, 739-747.	4.1	168
224	The comparative biology of skeletal metastasis. Veterinary and Comparative Oncology, 2003, 1, 131-139.	1.8	2
225	Effects of Raf Kinase Inhibitor Protein Expression on Suppression of Prostate Cancer Metastasis. Journal of the National Cancer Institute, 2003, 95, 878-889.	6.3	349
226	Hematologic and serum biochemical values for zebrafish (Danio rerio). Comparative Medicine, 2003, 53, 37-41.	1.0	41
227	Soluble receptor activator of nuclear factor kappaB Fc diminishes prostate cancer progression in bone. Cancer Research, 2003, 63, 7883-90.	0.9	116
228	20 Immunohistochemical expression of raf kinase inhibitor protein in prostate carcinoma. Handbook of Immunohistochemistry and in Situ Hybridization of Human Carcinomas, 2002, , 471-479.	0.0	0
229	Anabolic Actions of Parathyroid Hormone during Bone Growth Are Dependent on c-fos. Endocrinology, 2002, 143, 4038-4047.	2.8	115
230	<title>Early mineralization of normal and pathologic calvaria as revealed by Raman spectroscopy</title> . , 2002, , .		11
231	Prostate carcinoma skeletal metastases: Cross-talk between tumor and bone. , 2002, , 197-213.		0
232	Trends in early mineralization of murine calvarial osteoblastic cultures: a Raman microscopic study. Journal of Raman Spectroscopy, 2002, 33, 536-543.	2.5	55
233	Osteoblasts produce soluble factors that induce a gene expression pattern in non-metastatic prostate cancer cells, similar to that found in bone metastatic prostate cancer cells. Prostate, 2002, 51, 10-20.	2.3	39
234	Cyclooxygenaseâ€⊋ promotes prostate cancer progression. Prostate, 2002, 53, 232-240.	2.3	134

#	Article	IF	CITATIONS
235	Osteoprotegerin Abrogates Chronic Alcohol Ingestion-Induced Bone Loss in Mice. Journal of Bone and Mineral Research, 2002, 17, 1256-1263.	2.8	17
236	The role of osteoclastic activity in prostate cancer skeletal metastases. Drugs of Today, 2002, 38, 91.	2.4	48
237	Use of the stromal cell-derived factor-1/CXCR4 pathway in prostate cancer metastasis to bone. Cancer Research, 2002, 62, 1832-7.	0.9	768
238	Hydrogen Peroxide Activates NFκB and the Interleukin-6 Promoter Through NFκB-Inducing Kinase. Antioxidants and Redox Signaling, 2001, 3, 493-504.	5.4	112
239	Humoral Hypercalcemia of Malignancy. American Journal of Pathology, 2001, 158, 2219-2228.	3.8	55
240	Bone metastatic LNCaPâ€derivative C4â€2B prostate cancer cell line mineralizes in vitro. Prostate, 2001, 47, 212-221.	2.3	149
241	Ethanol activates NFκB DNA binding and p56lck protein tyrosine kinase in human osteoblast-like cells. Bone, 2001, 28, 167-173.	2.9	26
242	Interleukin-6 and prostate cancer progression. Cytokine and Growth Factor Reviews, 2001, 12, 33-40.	7.2	236
243	Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate, 2001, 48, 47-53.	2.3	112
244	Long-term exposure of tumor necrosis factor ? causes hypersensitivity to androgen and anti-androgen withdrawal phenomenon in LNCaP prostate cancer cells. Prostate, 2001, 46, 319-326.	2.3	19
245	Prostate carcinoma skeletal metastases: cross-talk between tumor and bone. Cancer and Metastasis Reviews, 2001, 20, 333-349.	5.9	179
246	The impact of chronic estrogen deprivation on immunologic parameters in the ovariectomized rhesus monkey (Macaca mulatta) model of menopause. Journal of Reproductive Immunology, 2001, 50, 41-55.	1.9	44
247	Antiâ€interleukinâ€6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate, 2001, 48, 47-53.	2.3	2
248	Osteoprotegerin inhibits prostate cancer–induced osteoclastogenesis and prevents prostate tumor growth in the bone. Journal of Clinical Investigation, 2001, 107, 1235-1244.	8.2	406
249	Raman imaging as a probe of chemical and biomechanical properties of bone tissue. , 2000, 3918, 2.		1
250	Neurotrophic role of interleukin-6 and soluble interleukin-6 receptors in N1E-115 neuroblastoma cells. Journal of Neuroimmunology, 2000, 102, 8-16.	2.3	19
251	Ovariectomy does not induce osteopenia through interleukin-6 in rhesus monkeys (Macaca mulatta). Bone, 2000, 26, 55-62.	2.9	12
252	Correlation of estradiol, parathyroid hormone, interleukin-6, and soluble interleukin-6 receptor during the normal menstrual cycle. Bone, 2000, 26, 79-85.	2.9	38

#	Article	IF	CITATIONS
253	TUMOR NECROSIS FACTOR- $\hat{1}$ ± REPRESSES ANDROGEN SENSITIVITY IN THE LNCaP PROSTATE CANCER CELL LINE. Journal of Urology, 2000, 164, 800-805.	0.4	80
254	Age-Associated Increased Interleukin-6 Gene Expression, Late-Life Diseases, and Frailty. Annual Review of Medicine, 2000, 51, 245-270.	12.2	1,066
255	Chronic alcohol ingestion induces osteoclastogenesis and bone loss through IL-6 in mice. Journal of Clinical Investigation, 2000, 106, 887-895.	8.2	123
256	TUMOR NECROSIS FACTOR-?? REPRESSES ANDROGEN SENSITIVITY IN THE LNCaP PROSTATE CANCER CELL LINE. Journal of Urology, 2000, 164, 800-805.	0.4	40
257	Correlation of serum L-carnitine and dehydro-epiandrosterone sulphate levels with age and sex in healthy adults. Age and Ageing, 1999, 28, 211-216.	1.6	18
258	Carnitine and Dehydroepiandrosterone Sulfate Induce Protein Synthesis in Porcine Primary Osteoblast-Like Cells. Calcified Tissue International, 1999, 64, 527-533.	3.1	32
259	Orchiectomy Increases Bone Marrow Interleukin-6 Levels in Mice. Calcified Tissue International, 1998, 62, 219-226.	3.1	46
260	Estrogen Inhibits Phorbol Ester-Induced ll̂ºBα Transcription and Protein Degradation. Biochemical and Biophysical Research Communications, 1998, 244, 691-695.	2.1	78
261	Development of Human Granulocyte-Macrophage Colony-Stimulating Factor-Transfected Tumor Cell Vaccines for the Treatment of Spontaneous Canine Cancer. Human Gene Therapy, 1998, 9, 1851-1861.	2.7	56
262	Immunologic aspects of osteoporosis. Developmental and Comparative Immunology, 1997, 21, 487-499.	2.3	63
263	Inhibition of NFκB Activity through Maintenance of lκBα Levels Contributes to Dihydrotestosterone-mediated Repression of the Interleukin-6 Promoter. Journal of Biological Chemistry, 1996, 271, 26267-26275.	3.4	126
264	Androgen Receptor: An Overview. Critical Reviews in Eukaryotic Gene Expression, 1995, 5, 97-125.	0.9	260
265	Current Studies of Liposome Muramyl Tripeptide (CGP 19835A Lipid) Therapy for Metastasis in Spontaneous Tumors: A Progress Review*. Journal of Drug Targeting, 1994, 2, 391-396.	4.4	35
266	Evaluation of Prognostic Factors and Sequential Combination Chemotherapy With Doxorubicin for Canine Lymphoma. Journal of Veterinary Internal Medicine, 1993, 7, 289-295.	1.6	192
267	Immune-mediated disease as a risk factor for canine lymphoma. Cancer, 1992, 70, 2334-2337.	4.1	34