
Richard Grencis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6028501/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Hatching of parasitic nematode eggs: a crucial step determining infection. Trends in Parasitology, 2022, 38, 174-187.	3.3	28
2	Defining the early stages of intestinal colonisation by whipworms. Nature Communications, 2022, 13, 1725.	12.8	18
3	<scp>Antiâ€<i>Trichuris</i></scp> mucosal responses are maintained during <i>H. bakeri</i> coâ€infection despite impaired parasite expulsion. Parasite Immunology, 2022, 44, e12936.	1.5	4
4	Immunity to Trichinella. , 2021, , 267-294.		0
5	Intestinal helminth co-infection is an unrecognised risk factor for increased pneumococcal carriage density and invasive disease. Scientific Reports, 2021, 11, 6984.	3.3	6
6	Immunoregulatory molecules secreted by Trichuris muris. Parasitology, 2021, , 1-7.	1.5	6
7	The interplay between <i>Trichuris</i> and the microbiota. Parasitology, 2021, 148, 1806-1813.	1.5	16
8	<i>Trichuris muris</i> and comorbidities – within a mouse model context. Parasitology, 2021, 148, 1774-1782.	1.5	10
9	Functional Characterization of the Oxantel-Sensitive Acetylcholine Receptor from Trichuris muris. Pharmaceuticals, 2021, 14, 698.	3.8	6
10	Sustained Post-Developmental T-Bet Expression Is Critical for the Maintenance of Type One Innate Lymphoid Cells In Vivo. Frontiers in Immunology, 2021, 12, 760198.	4.8	11
11	High-throughput phenotyping reveals expansive genetic and structural underpinnings of immune variation. Nature Immunology, 2020, 21, 86-100.	14.5	32
12	Organoids – New Models for Host–Helminth Interactions. Trends in Parasitology, 2020, 36, 170-181.	3.3	43
13	Interleukin-33 rescues perivascular adipose tissue anticontractile function in obesity. American Journal of Physiology - Heart and Circulatory Physiology, 2020, 319, H1387-H1397.	3.2	15
14	Development of caecaloids to study host–pathogen interactions: new insights into immunoregulatory functions of Trichuris muris extracellular vesicles in the caecum. International Journal for Parasitology, 2020, 50, 707-718.	3.1	23
15	Extracellular vesicles from Heligmosomoides bakeri and Trichuris muris contain distinct microRNA families and small RNAs that could underpin different functions in the host. International Journal for Parasitology, 2020, 50, 719-729.	3.1	16
16	Regulatory RNAs: A Universal Language for Inter-Domain Communication. International Journal of Molecular Sciences, 2020, 21, 8919.	4.1	18
17	Whipworm and roundworm infections. Nature Reviews Disease Primers, 2020, 6, 44.	30.5	114
18	Immunity to Soil-Transmitted Helminths: Evidence From the Field and Laboratory Models. Frontiers in Immunology, 2020, 11, 1286.	4.8	33

#	Article	IF	CITATIONS
19	IL-17A both initiates, via IFNÎ ³ suppression, and limits the pulmonary type-2 immune response to nematode infection. Mucosal Immunology, 2020, 13, 958-968.	6.0	42
20	Contrasting impact of rural, versus urban, living on glucose metabolism and blood pressure in Uganda. Wellcome Open Research, 2020, 5, 39.	1.8	2
21	The major secreted protein of the whipworm parasite tethers to matrix and inhibits interleukin-13 function. Nature Communications, 2019, 10, 2344.	12.8	48
22	TGFβ-activation by dendritic cells drives Th17 induction and intestinal contractility and augments the expulsion of the parasite Trichinella spiralis in mice. PLoS Pathogens, 2019, 15, e1007657.	4.7	24
23	The lung environment controls alveolar macrophage metabolism and responsiveness in type 2 inflammation. Nature Immunology, 2019, 20, 571-580.	14.5	140
24	ILC2s mediate systemic innate protection by priming mucus production at distal mucosal sites. Journal of Experimental Medicine, 2019, 216, 2714-2723.	8.5	52
25	Trickle infection and immunity to Trichuris muris. PLoS Pathogens, 2019, 15, e1007926.	4.7	35
26	Exclusive dependence of IL-10Rα signalling on intestinal microbiota homeostasis and control of whipworm infection. PLoS Pathogens, 2019, 15, e1007265.	4.7	24
27	T-bet controls intestinal mucosa immune responses via repression of type 2 innate lymphoid cell function. Mucosal Immunology, 2019, 12, 51-63.	6.0	30
28	Trickle infection and immunity to Trichuris muris. , 2019, 15, e1007926.		0
29	Trickle infection and immunity to Trichuris muris. , 2019, 15, e1007926.		0
30	Trickle infection and immunity to Trichuris muris. , 2019, 15, e1007926.		0
31	Trickle infection and immunity to Trichuris muris. , 2019, 15, e1007926.		0
32	Trickle infection and immunity to Trichuris muris. , 2019, 15, e1007926.		0
33	A sticky end for gastrointestinal helminths; the role of the mucus barrier. Parasite Immunology, 2018, 40, e12517.	1.5	93
34	Vaccination Against Whipworm: Identification of Potential Immunogenic Proteins in Trichuris muris Excretory/Secretory Material. Scientific Reports, 2018, 8, 4508.	3.3	19
35	Manipulation of host and parasite microbiotas: Survival strategies during chronic nematode infection. Science Advances, 2018, 4, eaap7399.	10.3	106
36	Antibiotics induce sustained dysregulation of intestinal T cell immunity by perturbing macrophage homeostasis. Science Translational Medicine, 2018, 10, .	12.4	200

#	Article	IF	CITATIONS
37	Extracellular vesicles induce protective immunity against <i>Trichuris muris</i> . Parasite Immunology, 2018, 40, e12536.	1.5	72
38	lmmune-driven alterations in mucin sulphation is an important mediator of Trichuris muris helminth expulsion. PLoS Pathogens, 2017, 13, e1006218.	4.7	35
39	Chronic Trichuris muris infection causes neoplastic change in the intestine and exacerbates tumour formation in APC min/+ mice. PLoS Neglected Tropical Diseases, 2017, 11, e0005708.	3.0	27
40	Tuft Cells: A New Flavor in Innate Epithelial Immunity. Trends in Parasitology, 2016, 32, 583-585.	3.3	31
41	New Role of Nod Proteins in Regulation of Intestinal Goblet Cell Response in the Context of Innate Host Defense in an Enteric Parasite Infection. Infection and Immunity, 2016, 84, 275-285.	2.2	25
42	The autophagy gene Atg1611 differentially regulates Treg and TH2 cells to control intestinal inflammation. ELife, 2016, 5, e12444.	6.0	153
43	Differential alterations in the small intestine epithelial cell turnover during acute and chronic infection with Echinostoma caproni (Trematoda). Parasites and Vectors, 2015, 8, 334.	2.5	19
44	Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host Microbiota and Metabolome: Effects Reversed by Pathogen Clearance. PLoS ONE, 2015, 10, e0125945.	2.5	220
45	Immunity to Helminths: Resistance, Regulation, and Susceptibility to Gastrointestinal Nematodes. Annual Review of Immunology, 2015, 33, 201-225.	21.8	175
46	Immunity to gastrointestinal nematodes: mechanisms and myths. Immunological Reviews, 2014, 260, 183-205.	6.0	101
47	Whipworm genome and dual-species transcriptome analyses provide molecular insights into an intimate host-parasite interaction. Nature Genetics, 2014, 46, 693-700.	21.4	139
48	Serine Protease(s) Secreted by the Nematode Trichuris muris Degrade the Mucus Barrier. PLoS Neglected Tropical Diseases, 2012, 6, e1856.	3.0	99
49	PWE-246â€Infliximab treatment significantly reduces inflammatory macrophage numbers while preserving regulatory macrophages in a mouse model of chronic Crohn's colitis. Gut, 2012, 61, A398.1-A398.	12.1	0
50	Trichuris muris: a model of gastrointestinal parasite infection. Seminars in Immunopathology, 2012, 34, 815-828.	6.1	135
51	PWE-245â€Anti-TNFα antibody therapy and parenteral corticosteroids demonstrate distinct effects in the treatment of experimentalTrichuris muris-induced chronic colitis. Gut, 2012, 61, A397.3-A398.	12.1	0
52	Changes in the mucosal barrier during acute and chronic <i>Trichuris muris</i> infection. Parasite Immunology, 2011, 33, 45-55.	1.5	74
53	Muc5ac: a critical component mediating the rejection of enteric nematodes. Journal of Experimental Medicine, 2011, 208, 893-900.	8.5	265
54	Colonic transcriptional profiling in resistance and susceptibility to trichuriasis. Inflammatory Bowel Diseases, 2010, 16, 2065-2079.	1.9	36

#	Article	IF	CITATIONS
55	Exploitation of the Intestinal Microflora by the Parasitic Nematode <i>Trichuris muris</i> . Science, 2010, 328, 1391-1394.	12.6	295
56	Mucin Gene Deficiency in Mice Impairs Host Resistance to an Enteric Parasitic Infection. Gastroenterology, 2010, 138, 1763-1771.e5.	1.3	162
57	IL-33, a Potent Inducer of Adaptive Immunity to Intestinal Nematodes. Journal of Immunology, 2008, 180, 2443-2449.	0.8	353
58	The intestinal epithelium: sensors to effectors in nematode infection. Mucosal Immunology, 2008, 1, 252-264.	6.0	112
59	An Increase in Epithelial Cell Apoptosis Is Associated with Chronic Intestinal Nematode Infection. Infection and Immunity, 2007, 75, 1556-1564.	2.2	49
60	Intraepithelial NK Cell-Derived IL-13 Induces Intestinal Pathology Associated with Nematode Infection. Journal of Immunology, 2005, 175, 3207-3213.	0.8	90
61	Accelerated Intestinal Epithelial Cell Turnover: A New Mechanism of Parasite Expulsion. Science, 2005, 308, 1463-1465.	12.6	407
62	The Trichuris muris System: a Paradigm of Resistance and Susceptibility to Intestinal Nematode Infection. Advances in Parasitology, 2004, 57, 255-307.	3.2	141
63	Leucocyte recruitment during enteric nematode infection. Immunology, 2001, 103, 505-510.	4.4	16
64	The effect of challenge and trickle Trichuris muris infections on the polarisation of the immune response. International Journal for Parasitology, 2001, 31, 1627-1637.	3.1	74
65	Vaccination against coccidiosis: host strain-dependent evocation of protective and suppressive subsets of murine lymphocytes. Parasite Immunology, 2000, 22, 161-172.	1.5	4
66	Trichuris muris: Host Intestinal Epithelial Cell Hyperproliferation during Chronic Infection Is Regulated by Interferon-l ³ . Experimental Parasitology, 1999, 92, 144-153.	1.2	80
67	A distinct role for interleukin-13 in Th2-cell-mediated immune responses. Current Biology, 1998, 8, 339-342.	3.9	337
68	A critical role for IL-13 in resistance to intestinal nematode infection. Journal of Immunology, 1998, 160, 3453-61.	0.8	203
69	Antibody-independent effector mechanisms in resistance to the intestinal nematode parasite Trichuris muris. Infection and Immunity, 1996, 64, 2950-2954.	2.2	66
70	Cytokine-mediated regulation of chronic intestinal helminth infection Journal of Experimental Medicine, 1994, 179, 347-351.	8.5	406
71	Low-level infection withTrichuris muris significantly affects the polarization of the CD4 response. European Journal of Immunology, 1994, 24, 3113-3118.	2.9	132
72	The in vivo role of stem cell factor (câ€kit ligand) on mastocytosis and host protective immunity to the intestinal nematode Trichinella spiralis in mice. Parasite Immunology, 1993, 15, 55-59.	1.5	103

#	Article	IF	CITATIONS
73	Immunological relationships during primary infection with Heligmosomoides polygyrus (Nematospiroides dubius): downregulation of specific cytokine secretion (IL-9 and IL-10) correlates with poor mastocytosis and chronic survival of adult worms. Parasite Immunology, 1993, 15, 415-421.	1.5	63
74	Cellular immune responses to the murine nematode parasite Trichuris muris. I. Differential cytokine production during acute or chronic infection. Immunology, 1991, 72, 508-13.	4.4	161
75	Host protective immunity to Trichinella spiralis in mice: activation of Th cell subsets and lymphokine secretion in mice expressing different response phenotypes. Immunology, 1991, 74, 329-32.	4.4	146
76	Adaptive Immune Effector Mechanisms against Intracellular Protozoa and Gut-Dwelling Nematodes. , 0, , 235-246.		2