Reut Shalgi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6027140/publications.pdf Version: 2024-02-01

RELIT SHALCE

#	Article	IF	CITATIONS
1	Global and Local Architecture of the Mammalian microRNA–Transcription Factor Regulatory Network. PLoS Computational Biology, 2007, 3, e131.	3.2	441
2	p53-independent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death and Differentiation, 2010, 17, 236-245.	11.2	314
3	Widespread Regulation of Translation by Elongation Pausing in Heat Shock. Molecular Cell, 2013, 49, 439-452.	9.7	293
4	Differentially Regulated Micro-RNAs and Actively Translated Messenger RNA Transcripts by Tumor Suppressor p53 in Colon Cancer. Clinical Cancer Research, 2006, 12, 2014-2024.	7.0	191
5	Widespread Inhibition of Posttranscriptional Splicing Shapes the Cellular Transcriptome following Heat Shock. Cell Reports, 2014, 7, 1362-1370.	6.4	169
6	p53â€repressed miRNAs are involved with E2F in a feedâ€forward loop promoting proliferation. Molecular Systems Biology, 2008, 4, 229.	7.2	138
7	Comparative analysis reveals genomic features of stress-induced transcriptional readthrough. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8362-E8371.	7.1	103
8	EGF Decreases the Abundance of MicroRNAs That Restrain Oncogenic Transcription Factors. Science Signaling, 2010, 3, ra43.	3.6	100
9	Cellular proteostasis decline in human senescence. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 31902-31913.	7.1	81
10	A catalog of stability-associated sequence elements in 3' UTRs of yeast mRNAs. Genome Biology, 2005, 6, R86.	9.6	63
11	Coupling transcriptional and post-transcriptional miRNA regulation in the control of cell fate. Aging, 2009, 1, 762-770.	3.1	56
12	Widespread PERK-dependent repression of ER targets in response to ER stress. Scientific Reports, 2019, 9, 4330.	3.3	39
13	Repression of transposable-elements – a microRNA anti-cancer defense mechanism?. Trends in Genetics, 2010, 26, 253-259.	6.7	34
14	An IQSEC2 Mutation Associated With Intellectual Disability and Autism Results in Decreased Surface AMPA Receptors. Frontiers in Molecular Neuroscience, 2019, 12, 43.	2.9	27
15	DoGFinder: a software for the discovery and quantification of readthrough transcripts from RNA-seq. BMC Genomics, 2018, 19, 597.	2.8	21
16	The aging proteostasis decline: From nematode to human. Experimental Cell Research, 2021, 399, 112474.	2.6	20
17	Amino Acid Biosynthesis Regulation during Endoplasmic Reticulum Stress Is Coupled to Protein Expression Demands. IScience, 2019, 19, 204-213.	4.1	17
18	Differential roles for DNAJ isoforms in HTT-polyQ and FUS aggregation modulation revealed by chaperone screens. Nature Communications, 2022, 13, 516.	12.8	17

REUT SHALGI

#	Article	IF	CITATIONS
19	CpG Islands as a Putative Source for Animal miRNAs: Evolutionary and Functional Implications. Molecular Biology and Evolution, 2011, 28, 1545-1551.	8.9	4
20	Characterization of spontaneous seizures and EEG abnormalities in a mouse model of the human A350V IQSEC2 mutation and identification of a possible target for precision medicine based therapy. Epilepsy Research, 2022, 182, 106907.	1.6	4
21	Housing of A350V IQSEC2 pups at 37 °C ambient temperature prevents seizures and permits the development of social vocalizations in adulthood. International Journal of Hyperthermia, 2021, 38, 1495-1501.	2.5	3
22	Widespread regulation of translation by elongation pausing in heat shock. FASEB Journal, 2013, 27, .	0.5	1
23	Caution needs to be taken when assigning transcription start sites to ends of protein-coding genes: a rebuttal. Human Genomics, 2018, 12, 32.	2.9	0