
Perla Maiolino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6027028/publications.pdf Version: 2024-02-01

DEDLA MAIOLINO

#	Article	IF	CITATIONS
1	Methods and Technologies for the Implementation of Large-Scale Robot Tactile Sensors. IEEE Transactions on Robotics, 2011, 27, 389-400.	10.3	347
2	A Flexible and Robust Large Scale Capacitive Tactile System for Robots. IEEE Sensors Journal, 2013, 13, 3910-3917.	4.7	182
3	Soft dielectrics for capacitive sensing in robot skins: Performance of different elastomer types. Sensors and Actuators A: Physical, 2015, 226, 37-47.	4.1	60
4	An anthropomorphic soft skeleton hand exploiting conditional models for piano playing. Science Robotics, 2018, 3, .	17.6	58
5	Flexible robot sealant dispensing cell using RGB-D sensor and off-line programming. Robotics and Computer-Integrated Manufacturing, 2017, 48, 188-195.	9.9	43
6	Model-Free Soft-Structure Reconstruction for Proprioception Using Tactile Arrays. IEEE Robotics and Automation Letters, 2019, 4, 2479-2484.	5.1	32
7	A Variable Stiffness Robotic Probe for Soft Tissue Palpation. IEEE Robotics and Automation Letters, 2018, 3, 1168-1175.	5.1	30
8	Organic Bendable and Stretchable Field Effect Devices for Sensing Applications. IEEE Sensors Journal, 2013, 13, 4764-4772.	4.7	24
9	Design of a 3D-Printed Soft Robotic Hand With Integrated Distributed Tactile Sensing. IEEE Robotics and Automation Letters, 2022, 7, 3945-3952.	5.1	24
10	Soft morphological processing of tactile stimuli for autonomous category formation. , 2018, , .		18
11	Action Augmentation of Tactile Perception for Soft-Body Palpation. Soft Robotics, 2022, 9, 280-292.	8.0	17
12	Development of an Integrated Tactile Sensor System for Clothes Manipulation and Classification Using Industrial Grippers. IEEE Sensors Journal, 2017, 17, 6385-6396.	4.7	15
13	Skinning a Robot: Design Methodologies for Large-Scale Robot Skin. IEEE Robotics and Automation Magazine, 2016, 23, 150-159.	2.0	13
14	On the development of a tactile sensor for fabric manipulation and classification for industrial applications. , 2015, , .		12
15	Structuring of tactile sensory information for category formation in robotics palpation. Autonomous Robots, 2020, 44, 1377-1393.	4.8	12
16	Exploiting Distributed Tactile Sensors to Drive a Robot Arm Through Obstacles. IEEE Robotics and Automation Letters, 2021, 6, 4361-4368.	5.1	12
17	An Abdominal Phantom With Tunable Stiffness Nodules and Force Sensing Capability for Palpation Training. IEEE Transactions on Robotics, 2021, 37, 1051-1064.	10.3	11
18	Achieving Robotically Peeled Lettuce. IEEE Robotics and Automation Letters, 2018, 3, 4337-4342.	5.1	10

Perla Maiolino

#	Article	IF	CITATIONS
19	An Atlas for the Inkjet Printing of Large-Area Tactile Sensors. Sensors, 2022, 22, 2332.	3.8	10
20	A Simulation-Based Toolbox to Expedite the Digital Design of Bellow Soft Pneumatic Actuators. , 2022, , .		9
21	Conditioned haptic perception for 3D localization of nodules in soft tissue palpation with a variable stiffness probe. PLoS ONE, 2020, 15, e0237379.	2.5	8
22	Efficient Bayesian Exploration for Soft Morphology-Action Co-optimization. , 2020, , .		8
23	Online Morphological Adaptation for Tactile Sensing Augmentation. Frontiers in Robotics and AI, 2021, 8, 665030.	3.2	8
24	Comparative Analysis of Model-Based Predictive Shared Control for Delayed Operation in Object Reaching and Recognition Tasks With Tactile Sensing. Frontiers in Robotics and Al, 2021, 8, 730946.	3.2	8
25	3D-Printed Soft Sensors for Adaptive Sensing with Online and Offline Tunable Stiffness. Soft Robotics, 2022, 9, 1062-1073.	8.0	8
26	Contact Modelling and Tactile Data Processing for Robot Skins. Sensors, 2019, 19, 814.	3.8	6
27	A 3D-Printable Robotic Gripper Based on Thick Panel Origami. Frontiers in Robotics and AI, 2021, 8, 730227.	3.2	6
28	Fabric Classification Using a Finger-Shaped Tactile Sensor via Robotic Sliding. Frontiers in Neurorobotics, 2022, 16, 808222.	2.8	6
29	Design and Characterization of a 3D-Printed Pneumatically-Driven Bistable Valve With Tunable Characteristics. IEEE Robotics and Automation Letters, 2022, 7, 112-119.	5.1	5
30	Magneto-Active Elastomer Filter for Tactile Sensing Augmentation Through Online Adaptive Stiffening. IEEE Robotics and Automation Letters, 2022, 7, 5928-5933.	5.1	5
31	Soft Morphing Interface for Tactile Feedback in Remote Palpation. , 2022, , .		5
32	Sensorized Phantom For Characterizing Large Area Deformation of Soft Bodies for Medical Applications. , 2020, , .		3
33	A Modular Approach to Design Multi-Channel Bistable Valves for Integrated Pneumatically-Driven Soft Robots via 3D-Printing. IEEE Robotics and Automation Letters, 2022, 7, 3412-3418.	5.1	3
34	Editorial: Current Advances in Soft Robotics: Best Papers From RoboSoft 2018. Frontiers in Robotics and Al, 2020, 7, 56.	3.2	1
35	A Local Filtering Technique for Robot Skin Data. IEEE Robotics and Automation Letters, 2021, 6, 7766-7772.	5.1	1
36	A Modular Soft Robotic Arm with Embedded Tactile Sensors for Proprioception. , 2022, , .		1

A Modular Soft Robotic Arm with Embedded Tactile Sensors for Proprioception. , 2022, , . 36

3

#	Article	IF	CITATIONS
37	Title is missing!. , 2020, 15, e0237379.		0
38	Title is missing!. , 2020, 15, e0237379.		0
39	Title is missing!. , 2020, 15, e0237379.		0
40	Title is missing!. , 2020, 15, e0237379.		0
41	Title is missing!. , 2020, 15, e0237379.		0
42	Title is missing!. , 2020, 15, e0237379.		0
43	How the Environment Shapes Tactile Sensing: Understanding the Relationship Between Tactile Filters and Surrounding Environment. Frontiers in Robotics and AI, O, 9, .	3.2	0