Alberto Viglione

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6026329/publications.pdf

Version: 2024-02-01

105 10,026 49 91 g-index

152 152 152 7704

times ranked

citing authors

docs citations

all docs

#	Article	IF	CITATIONS
1	Temporal Scaling of Streamflow Elasticity to Precipitation: A Global Analysis. Water Resources Research, 2022, 58, .	4.2	8
2	Correlation between climate and flood indices in Northwestern Italy at different temporal scales. Journal of Hydrology and Hydromechanics, 2022, 70, 178-194.	2.0	2
3	Understanding Heavy Tails of Flood Peak Distributions. Water Resources Research, 2022, 58, .	4.2	23
4	A comparative analysis of the relationship between flood experience and private flood mitigation behaviour in the regions of England. Journal of Flood Risk Management, 2021, 14, e12700.	3.3	5
5	A comparison between generalized least squares regression and top-kriging for homogeneous cross-correlated flood regions. Hydrological Sciences Journal, 2021, 66, 565-579.	2.6	5
6	Do small and large floods have the same drivers of change? A regional attribution analysis in Europe. Hydrology and Earth System Sciences, 2021, 25, 1347-1364.	4.9	39
7	Technical note: Hydrology modelling R packages – a unified analysis of models and practicalities from a user perspective. Hydrology and Earth System Sciences, 2021, 25, 3937-3973.	4.9	17
8	Characteristics and process controls of statistical flood moments in Europe – a data-based analysis. Hydrology and Earth System Sciences, 2021, 25, 5535-5560.	4.9	10
9	Current European flood-rich period exceptional compared with past 500Âyears. Nature, 2020, 583, 560-566.	27.8	154
10	Impact of Climate and Geology on Event Runoff Characteristics at the Regional Scale. Water (Switzerland), 2020, 12, 3457.	2.7	7
11	Invigorating Hydrological Research Through Journal Publications. Water Resources Research, 2020, 56, .	4.2	5
12	Assessment of past flood changes across Europe based on flood-generating processes. Hydrological Sciences Journal, 2020, 65, 1830-1847.	2.6	9
13	Flood trends in Europe: are changes in small and big floods different?. Hydrology and Earth System Sciences, 2020, 24, 1805-1822.	4.9	54
14	A Processâ€Based Framework to Characterize and Classify Runoff Events: The Event Typology of Germany. Water Resources Research, 2020, 56, e2019WR026951.	4.2	37
15	Detecting Floodâ€Rich and Floodâ€Poor Periods in Annual Peak Discharges Across Europe. Water Resources Research, 2020, 56, e2019WR026575.	4.2	21
16	The role of flood wave superposition in the severity of large floods. Hydrology and Earth System Sciences, 2020, 24, 1633-1648.	4.9	17
17	Informed attribution of flood changes to decadal variation of atmospheric, catchment and river drivers in Upper Austria. Journal of Hydrology, 2019, 577, 123919.	5.4	26
18	Sociohydrology: Scientific Challenges in Addressing the Sustainable Development Goals. Water Resources Research, 2019, 55, 6327-6355.	4.2	226

#	Article	IF	CITATIONS
19	Causative classification of river flood events. Wiley Interdisciplinary Reviews: Water, 2019, 6, e1353.	6.5	86
20	Changing climate both increases and decreases European river floods. Nature, 2019, 573, 108-111.	27.8	639
21	The Value of Empirical Data for Estimating the Parameters of a Sociohydrological Flood Risk Model. Water Resources Research, 2019, 55, 1312-1336.	4.2	43
22	Twenty-three unsolved problems in hydrology (UPH) – a community perspective. Hydrological Sciences Journal, 2019, 64, 1141-1158.	2.6	474
23	Learning from the Ancient Maya: Exploring the Impact of Drought on Population Dynamics. Ecological Economics, 2019, 157, 1-16.	5.7	24
24	Floods in Austria. , 2019, , 169-177.		18
25	Modis Snowline Elevation Changes During Snowmelt Runoff Events in Europe. Journal of Hydrology and Hydromechanics, 2019, 67, 101-109.	2.0	14
26	Detection of trends in magnitude and frequency of flood peaks across Europe. Hydrological Sciences Journal, 2018, 63, 493-512.	2.6	68
27	Evolutionary leap in largeâ€scale flood risk assessment needed. Wiley Interdisciplinary Reviews: Water, 2018, 5, e1266.	6.5	50
28	Joint Editorial: Invigorating hydrological research through journal publications. Hydrology Research, 2018, 49, iii-ix.	2.7	0
29	Reservoir Effects on Flood Peak Discharge at the Catchment Scale. Water Resources Research, 2018, 54, 9623-9636.	4.2	46
30	Hess Opinions: An interdisciplinary research agenda to explore the unintended consequences of structural flood protection. Hydrology and Earth System Sciences, 2018, 22, 5629-5637.	4.9	67
31	Joint editorial: Invigorating hydrological research through journal publications. Hydrology and Earth System Sciences, 2018, 22, 5735-5739.	4.9	3
32	Invigorating Hydrological Research through Journal Publications. Journal of Hydrometeorology, 2018, 19, 1713-1719.	1.9	0
33	Joint Editorial: Invigorating Hydrological Research through Journal Publications. Vadose Zone Journal, 2018, 17, 180001ed.	2.2	0
34	Invigorating hydrological research through journal publications. Ecohydrology, 2018, 11, e2016.	2.4	0
35	Invigorating hydrological research through journal publications. Hydrological Sciences Journal, 2018, 63, 1113-1117.	2.6	4
36	Conceptual model building inspired by field-mapped runoff generation mechanisms. Journal of Hydrology and Hydromechanics, 2018, 66, 303-315.	2.0	9

#	Article	IF	CITATIONS
37	Joint Editorial Invigorating Hydrological Research through Journal Publications. Journal of Hydrology and Hydromechanics, 2018, 66, 257-260.	2.0	1
38	Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research. Water Resources Research, 2017, 53, 5209-5219.	4.2	269
39	Characterization of regional variability of seasonal water balance within Omo-Ghibe River Basin, Ethiopia. Hydrological Sciences Journal, 2017, 62, 1200-1215.	2.6	21
40	A dynamic framework for flood risk. Water Security, 2017, 1, 3-11.	2.5	37
41	Socio-hydrological modelling of flood-risk dynamics: comparing the resilience of green and technological systems. Hydrological Sciences Journal, 2017, 62, 880-891.	2.6	72
42	Changing climate shifts timing of European floods. Science, 2017, 357, 588-590.	12.6	584
43	Drought and flood in the Anthropocene: feedback mechanisms in reservoir operation. Earth System Dynamics, 2017, 8, 225-233.	7.1	122
44	A three-pillar approach to assessing climate impacts on low flows. Hydrology and Earth System Sciences, 2016, 20, 3967-3985.	4.9	20
45	Uncertainty contributions to low-flow projections in Austria. Hydrology and Earth System Sciences, 2016, 20, 2085-2101.	4.9	34
46	Adaptation of water resources systems to changing society and environment: a statement by the International Association of Hydrological Sciences. Hydrological Sciences Journal, 2016, 61, 2803-2817.	2.6	57
47	A fuzzy <scp>B</scp> ayesian approach to flood frequency estimation with imprecise historical information. Water Resources Research, 2016, 52, 6730-6750.	4.2	21
48	Modeling the interaction between flooding events and economic growth. Ecological Economics, 2016, 129, 193-209.	5.7	47
49	Conceptualizing socioâ€hydrological drought processes: The case of the Maya collapse. Water Resources Research, 2016, 52, 6222-6242.	4.2	73
50	Fragmented patterns of flood change across the United States. Geophysical Research Letters, 2016, 43, 10232-10239.	4.0	123
51	The influence of non-stationarity in extreme hydrological events on flood frequency estimation. Journal of Hydrology and Hydromechanics, 2016, 64, 426-437.	2.0	88
52	Attribution of regional flood changes based on scaling fingerprints. Water Resources Research, 2016, 52, 5322-5340.	4.2	75
53	Increasing river floods: fiction or reality?. Wiley Interdisciplinary Reviews: Water, 2015, 2, 329-344.	6.5	123
54	Accelerating advances in continental domain hydrologic modeling. Water Resources Research, 2015, 51, 10078-10091.	4.2	102

#	Article	IF	CITATIONS
55	Debates—Perspectives on socioâ€hydrology: Capturing feedbacks between physical and social processes. Water Resources Research, 2015, 51, 4770-4781.	4.2	337
56	Charting unknown watersâ€"On the role of surprise in flood risk assessment and management. Water Resources Research, 2015, 51, 6399-6416.	4.2	83
57	Virtual laboratories: new opportunities for collaborative water science. Hydrology and Earth System Sciences, 2015, 19, 2101-2117.	4.9	63
58	Dependence between flood peaks and volumes: a case study on climate and hydrological controls. Hydrological Sciences Journal, 2015, 60, 968-984.	2.6	67
59	Impact of reduced anthropogenic emissions and century flood on the phosphorus stock, concentrations and loads in the Upper Danube. Science of the Total Environment, 2015, 518-519, 117-129.	8.0	17
60	Flood Processes and Hazards. , 2015, , 3-33.		5
61	The role of station density for predicting daily runoff by top-kriging interpolation in Austria. Journal of Hydrology and Hydromechanics, 2015, 63, 228-234.	2.0	27
62	Floods and climate: emerging perspectives for flood risk assessment and management. Natural Hazards and Earth System Sciences, 2014, 14, 1921-1942.	3.6	239
63	Regional parent flood frequency distributions in Europe – Part 1: Is the GEV model suitable as a pan-European parent?. Hydrology and Earth System Sciences, 2014, 18, 4381-4389.	4.9	59
64	Understanding flood regime changes in Europe: a state-of-the-art assessment. Hydrology and Earth System Sciences, 2014, 18, 2735-2772.	4.9	423
65	Insights from socio-hydrology modelling on dealing with flood risk – Roles of collective memory, risk-taking attitude and trust. Journal of Hydrology, 2014, 518, 71-82.	5.4	223
66	rtop: An R package for interpolation of data with a variable spatial support, with an example from river networks. Computers and Geosciences, 2014, 67, 180-190.	4.2	43
67	Emerging Approaches to Hydrological Risk Management in a Changing World. , 2013, , 3-10.		30
68	"Panta Rheiâ€"Everything Flows― Change in hydrology and societyâ€"The IAHS Scientific Decade 2013â€"2022. Hydrological Sciences Journal, 2013, 58, 1256-1275.	2.6	569
69	Flood frequency hydrology: 3. A Bayesian analysis. Water Resources Research, 2013, 49, 675-692.	4.2	137
70	Comparative assessment of predictions in ungauged basins – Part 2: Flood and low flow studies. Hydrology and Earth System Sciences, 2013, 17, 2637-2652.	4.9	95
71	Quantifying effects of catchments storage thresholds on step changes in the flood frequency curve. Water Resources Research, 2013, 49, 6946-6958.	4.2	41
72	Comparative assessment of predictions in ungauged basins – Part 3: Runoff signatures in Austria. Hydrology and Earth System Sciences, 2013, 17, 2263-2279.	4.9	93

#	Article	IF	Citations
73	Comparative assessment of predictions in ungauged basins – Part 1: Runoff-hydrograph studies. Hydrology and Earth System Sciences, 2013, 17, 1783-1795.	4.9	186
74	Socio-hydrology: conceptualising human-flood interactions. Hydrology and Earth System Sciences, 2013, 17, 3295-3303.	4.9	403
75	Runoff Prediction in Ungauged Basins. , 2013, , .		432
76	Extreme rainstorms: Comparing regional envelope curves to stochastically generated events. Water Resources Research, 2012, 48, .	4.2	23
77	Step changes in the flood frequency curve: Process controls. Water Resources Research, 2012, 48, .	4.2	63
78	Flood timescales: Understanding the interplay of climate and catchment processes through comparative hydrology. Water Resources Research, 2012, 48, .	4.2	156
79	Flood forecast errors and ensemble spread—A case study. Water Resources Research, 2012, 48, .	4.2	39
80	Estimating the flood frequency distribution at seasonal and annual time scales. Hydrology and Earth System Sciences, 2012, 16, 4651-4660.	4.9	37
81	Corrigendum to "Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response" published in Hydrol. Earth Syst. Sci., 15, 3767–3783, 2011. Hydrology and Earth System Sciences, 2012, 16, 1237-1237.	4.9	0
82	Exploring the physical controls of regional patterns of flow duration curves – Part 1: Insights from statistical analyses. Hydrology and Earth System Sciences, 2012, 16, 4435-4446.	4.9	102
83	Exploring the physical controls of regional patterns of flow duration curves – Part 4: A synthesis of empirical analysis, process modeling and catchment classification. Hydrology and Earth System Sciences, 2012, 16, 4483-4498.	4.9	87
84	Runoff models and flood frequency statistics for design flood estimation in Austria – Do they tell a consistent story?. Journal of Hydrology, 2012, 456-457, 30-43.	5.4	84
85	Statistical Hydrology., 2011, , 479-517.		29
86	Spatial moments of catchment rainfall: rainfall spatial organisation, basin morphology, and flood response. Hydrology and Earth System Sciences, 2011, 15, 3767-3783.	4.9	83
87	Inclusion of historical information in flood frequency analysis using a Bayesian MCMC technique: a case study for the power dam OrlÃk, Czech Republic. Contributions To Geophysics and Geodesy, 2010, 40, .	0.6	21
88	Low Flows Regionalization in North-Western Italy. Water Resources Management, 2010, 24, 4049-4074.	3.9	58
89	Bayesian MCMC approach to regional flood frequency analyses involving extraordinary flood events at ungauged sites. Journal of Hydrology, 2010, 394, 101-117.	5.4	129
90	Barriers to the exchange of hydrometeorological data in Europe: Results from a survey and implications for data policy. Journal of Hydrology, 2010, 394, 63-77.	5.4	62

#	Article	IF	CITATIONS
91	Quantifying space-time dynamics of flood event types. Journal of Hydrology, 2010, 394, 213-229.	5.4	82
92	Generalised synthesis of space–time variability in flood response: An analytical framework. Journal of Hydrology, 2010, 394, 198-212.	5.4	67
93	Confidence intervals for the coefficient of L-variation in hydrological applications. Hydrology and Earth System Sciences, 2010, 14, 2229-2242.	4.9	7
94	On the role of storm duration in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences, 2009, 13, 205-216.	4.9	86
95	On the role of the runoff coefficient in the mapping of rainfall to flood return periods. Hydrology and Earth System Sciences, 2009, 13, 577-593.	4.9	76
96	A compilation of data on European flash floods. Journal of Hydrology, 2009, 367, 70-78.	5.4	623
97	An approach to estimate nonparametric flow duration curves in ungauged basins. Water Resources Research, 2009, 45, .	4.2	73
98	The Influence of Soil Characteristics in Low Flows Regionalization. American Journal of Environmental Sciences, 2009, 5, 535-545.	0.5	0
99	A comparison of homogeneity tests for regional frequency analysis. Water Resources Research, 2007, 43, .	4.2	127
100	Panta Rhei 2013–2015: global perspectives on hydrology, society and change. Hydrological Sciences Journal, 0, , 1-18.	2.6	53
101	A European Flood Database: facilitating comprehensive flood research beyond administrative boundaries. Proceedings of the International Association of Hydrological Sciences, 0, 370, 89-95.	1.0	32
102	Preface: Extreme Hydrological Events. Proceedings of the International Association of Hydrological Sciences, 0, 369, 1-2.	1.0	0
103	Human signatures derived from nighttime lights along the Eastern Alpine river network in Austria and Italy. Proceedings of the International Association of Hydrological Sciences, 0, 373, 131-136.	1.0	1
104	Estimating parameter values of a socio-hydrological flood model. Proceedings of the International Association of Hydrological Sciences, 0, 379, 193-198.	1.0	0
105	Joint editorial: Invigorating hydrological research through journal publications. Proceedings of the International Association of Hydrological Sciences, 0, 380, 3-8.	1.0	0