Clement Hamani

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6025726/publications.pdf

Version: 2024-02-01

140 papers 12,462 citations

50276 46 h-index 26613 107 g-index

142 all docs $\begin{array}{c} 142 \\ \\ \text{docs citations} \end{array}$

142 times ranked 10770 citing authors

#	Article	IF	Citations
1	Lesional psychiatric neurosurgery: meta-analysis of clinical outcomes using a transdiagnostic approach. Journal of Neurology, Neurosurgery and Psychiatry, 2022, 93, 207-215.	1.9	5
2	Dysgeusia induced and resolved by focused ultrasound thalamotomy: case report. Journal of Neurosurgery, 2022, 136, 215-220.	1.6	1
3	Sex differences in long-term fear and anxiety-like responses in a preclinical model of PTSD. Journal of Psychiatric Research, 2022, 151, 619-625.	3.1	5
4	Deep brain stimulation for obsessive–compulsive disorder: a crisis of access. Nature Medicine, 2022, 28, 1529-1532.	30.7	36
5	Longitudinal Changes After Amygdala Surgery for Intractable Aggressive Behavior: Clinical, Imaging Genetics, and Deformation-Based Morphometry Study—A Case Series. Neurosurgery, 2021, 88, E158-E169.	1.1	15
6	Three-Tesla Magnetic Resonance Imaging of Patients With Deep Brain Stimulators: Results From a Phantom Study and a Pilot Study in Patients. Neurosurgery, 2021, 88, 349-355.	1.1	13
7	Deep brain stimulation for refractory obsessive-compulsive disorder (OCD): emerging or established therapy?. Molecular Psychiatry, 2021, 26, 60-65.	7.9	54
8	Preface. International Review of Neurobiology, 2021, 159, xiii-xiv.	2.0	0
9	From vision to action: Canadian leadership in ethics and neurotechnology. International Review of Neurobiology, 2021, 159, 241-273.	2.0	O
10	Focused ultrasound neuromodulation. International Review of Neurobiology, 2021, 159, 221-240.	2.0	8
11	Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines for Deep Brain Stimulations for Obsessive-Compulsive Disorder: Update of the 2014 Guidelines. Neurosurgery, 2021, 88, 710-712.	1.1	14
12	Investigating the role of CB1 endocannabinoid transmission in the anti-fear and anxiolytic-like effects of ventromedial prefrontal cortex deep brain stimulation. Journal of Psychiatric Research, 2021, 135, 264-269.	3.1	6
13	Ultrasound-sensitive nanodroplets achieve targeted neuromodulation. Journal of Controlled Release, 2021, 332, 30-39.	9.9	29
14	Neuromodulation for chronic pain. Lancet, The, 2021, 397, 2111-2124.	13.7	180
15	Fields of Forel Brain Stimulation Improves Levodopa-Unresponsive Gait and Balance Disorders in Parkinson's Disease. Neurosurgery, 2021, 89, 450-459.	1.1	3
16	Neurocircuitry of Deep Brain Stimulation for Obsessive-Compulsive Disorder as Revealed by Tractography: A Systematic Review. Frontiers in Psychiatry, 2021, 12, 680484.	2.6	3
17	A systematic review on neuromodulation therapies for reducing body weight in patients with obesity. Obesity Reviews, 2021, 22, e13309.	6.5	11
18	Implantable Pulse Generators for Deep Brain Stimulation: Challenges, Complications, and Strategies for Practicality and Longevity. Frontiers in Human Neuroscience, 2021, 15, 708481.	2.0	30

#	Article	IF	CITATIONS
19	An Unusual Case of Deep Brain Stimulation Wound Infection Secondary to COVID-19 Mask-Related Friction. Stereotactic and Functional Neurosurgery, 2021, , 1-3.	1.5	O
20	Motor cortex stimulation for chronic neuropathic pain: results of a double-blind randomized study. Brain, 2021, 144, 2994-3004.	7.6	31
21	Case report: 5 Years follow-up on posterior hypothalamus deep brain stimulation for intractable aggressive behaviour associated with drug-resistant epilepsy. Brain Stimulation, 2021, 14, 1201-1204.	1.6	5
22	Magnetic Resonance–Guided Focused Ultrasound Capsulotomy for Musical Obsessions. Biological Psychiatry, 2021, 90, e49-e50.	1.3	2
23	Inâ€Vivo Solidâ€Phase Microextraction for Sampling of Oxylipins in Brain of Awake, Moving Rats. Angewandte Chemie, 2020, 132, 2413-2419.	2.0	2
24	The Ansa Subthalamica: A Neglected Fiber Tract. Movement Disorders, 2020, 35, 75-80.	3.9	20
25	The Use of Tractography-Based Targeting in Deep Brain Stimulation for Psychiatric Indications. Frontiers in Human Neuroscience, 2020, 14, 588423.	2.0	7
26	Predicting response to psychiatric surgery: a systematic review of neuroimaging findings. Journal of Psychiatry and Neuroscience, 2020, 45, 387-394.	2.4	4
27	The ansa subthalamica as a substrate for DBS-induced manic symptoms. Brain Stimulation, 2020, 13, 1399-1401.	1.6	4
28	Magnetic Resonance-Guided Focused Ultrasound Capsulotomy for Treatment-Resistant Psychiatric Disorders. Operative Neurosurgery, 2020, 19, 741-749.	0.8	19
29	Refractoriness of aggressive behaviour to pharmacological treatment: cortical thickness analysis in autism spectrum disorder. BJPsych Open, 2020, 6, e85.	0.7	9
30	Neuromodulation for major depressive disorder: innovative measures to capture efficacy and outcomes. Lancet Psychiatry, the, 2020, 7, 1075-1080.	7.4	8
31	Examining cognitive change in magnetic resonance-guided focused ultrasound capsulotomy for psychiatric illness. Translational Psychiatry, 2020, 10, 397.	4.8	11
32	Neuromodulation in the Treatment of Alzheimer's Disease: Current and Emerging Approaches. Journal of Alzheimer's Disease, 2020, 78, 1299-1313.	2.6	7
33	Magnetic resonance-guided focused ultrasound capsulotomy for refractory obsessive compulsive disorder and major depressive disorder: clinical and imaging results from two phase I trials. Molecular Psychiatry, 2020, 25, 1946-1957.	7.9	53
34	Treating Post-traumatic Stress Disorder with Neuromodulation Therapies: Transcranial Magnetic Stimulation, Transcranial Direct Current Stimulation, and Deep Brain Stimulation. Neurotherapeutics, 2020, 17, 1747-1756.	4.4	16
35	Lack of clinical response to deep brain stimulation of the medial forebrain bundle in depression. Brain Stimulation, 2020, 13, 1268-1270.	1.6	13
36	Deep Brain Stimulation of the Medial Septal Nucleus Induces Expression of a Virally Delivered Reporter Gene in Dentate Gyrus. Frontiers in Neuroscience, 2020, 14, 463.	2.8	4

#	Article	IF	CITATIONS
37	Patient With Posttraumatic Stress Disorder Successfully Treated With Deep Brain Stimulation ofÂthe Medial Prefrontal Cortex and Uncinate Fasciculus. Biological Psychiatry, 2020, 88, e57-e59.	1.3	21
38	Localized anesthesia of a specific brain region using ultrasound-responsive barbiturate nanodroplets. Theranostics, 2020, 10, 2849-2858.	10.0	33
39	Endocannabinoid modulating drugs improve anxiety but not the expression of conditioned fear in a rodent model of post-traumatic stress disorder. Neuropharmacology, 2020, 166, 107965.	4.1	11
40	Technical Note: An anthropomorphic phantom with implanted neurostimulator for investigation of MRI safety. Medical Physics, 2020, 47, 3745-3751.	3.0	5
41	Deep brain stimulation for treatment-resistant depression: current status and future perspectives. Expert Review of Medical Devices, 2020, 17, 371-373.	2.8	5
42	International Legal Approaches to Neurosurgery for Psychiatric Disorders. Frontiers in Human Neuroscience, 2020, 14, 588458.	2.0	10
43	Tractography-based targeting of the ventral intermediate nucleus: accuracy and clinical utility in MRgFUS thalamotomy. Journal of Neurosurgery, 2020, 133, 1002-1009.	1.6	20
44	Cost-effectiveness analysis of MR-guided focused ultrasound thalamotomy for tremor-dominant Parkinson's disease. Journal of Neurosurgery, 2020, 135, 273-278.	1.6	10
45	Technical and radiographic considerations for magnetic resonance imaging–guided focused ultrasound capsulotomy. Journal of Neurosurgery, 2020, 135, 291-299.	1.6	8
46	Deep brain stimulation as a treatment for depressive disorder. Revista Brasileira De Psiquiatria, 2020, 42, 342-343.	1.7	2
47	Evolution of gamma knife capsulotomy for intractable obsessive-compulsive disorder. Molecular Psychiatry, 2019, 24, 218-240.	7.9	73
48	Safety and efficacy of focused ultrasound induced blood-brain barrier opening, an integrative review of animal and human studies. Journal of Controlled Release, 2019, 309, 25-36.	9.9	85
49	Resting state functional connectivity changes after MR-guided focused ultrasound mediated blood-brain barrier opening in patients with Alzheimer's disease. Neurolmage, 2019, 200, 275-280.	4.2	46
50	Glymphatics Visualization after Focused Ultrasoundâ€Induced Blood–Brain Barrier Opening in Humans. Annals of Neurology, 2019, 86, 975-980.	5.3	80
51	Amygdala and Hypothalamus: Historical Overview With Focus on Aggression. Neurosurgery, 2019, 85, 11-30.	1.1	59
52	The neural response to deep brain stimulation of the anterior nucleus of the thalamus: A MEMRI and c-Fos study. Brain Research Bulletin, 2019, 147, 133-139.	3.0	15
53	Magnetic Resonance–Guided Focused Ultrasound for Psychiatric Disorders. Clinical Pharmacology and Therapeutics, 2019, 106, 720-722.	4.7	7
54	Transcranial direct current stimulation does not improve memory deficits or alter pathological hallmarks in a rodent model of Alzheimer's disease. Journal of Psychiatric Research, 2019, 114, 93-98.	3.1	14

#	Article	IF	Citations
55	Neuromodulation Strategies in Post-Traumatic Stress Disorder: From Preclinical Models to Clinical Applications. Brain Sciences, 2019, 9, 45.	2.3	22
56	First-in-human trial of blood–brain barrier opening in amyotrophic lateral sclerosis using MR-guided focused ultrasound. Nature Communications, 2019, 10, 4373.	12.8	312
57	Quality of Life After Motor Cortex Stimulation: Clinical Results and Systematic Review of the Literature. Neurosurgery, 2019, 84, 451-456.	1.1	18
58	Is there a role for MRâ€guided focused ultrasound in Parkinson's disease?. Movement Disorders, 2018, 33, 575-579.	3.9	6
59	Magnetic Resonance Imaging–Guided Focused Ultrasound Thalamotomy in Parkinson Tremor: Reoperation After Benefit Decay. Movement Disorders, 2018, 33, 848-849.	3.9	34
60	Congress of Neurological Surgeons Systematic Review and Evidence-Based Guideline on Subthalamic Nucleus and Globus Pallidus Internus Deep Brain Stimulation for the Treatment of Patients With Parkinson's Disease: Executive Summary. Neurosurgery, 2018, 82, 753-756.	1.1	52
61	Prefrontal Cortex Deep Brain Stimulation Improves Fear and Anxiety-Like Behavior and Reduces Basolateral Amygdala Activity in a Preclinical Model of Posttraumatic Stress Disorder. Neuropsychopharmacology, 2018, 43, 1099-1106.	5.4	43
62	Chronic deep brain stimulation in an Alzheimer's disease mouse model enhances memory and reduces pathological hallmarks. Brain Stimulation, 2018, 11, 435-444.	1.6	49
63	Assessment of Safety and Outcome of Lateral Hypothalamic Deep Brain Stimulation for Obesity in a Small Series of Patients With Prader-Willi Syndrome. JAMA Network Open, 2018, 1, e185275.	5.9	32
64	Magnetic resonance–guided focused ultrasound thalamotomy for treatment of essential tremor: A 2â€year outcome study. Movement Disorders, 2018, 33, 1647-1650.	3.9	36
65	MRIgFUS in tremor-dominant PD does not lead to substantial cognitive adverse events. Neurology, 2018, 91, 641-642.	1.1	1
66	The Emerging Role of Tractography in Deep Brain Stimulation: Basic Principles and Current Applications. Brain Sciences, 2018, 8, 23.	2.3	27
67	Speech and language adverse effects after thalamotomy and deep brain stimulation in patients with movement disorders: A metaâ€analysis. Movement Disorders, 2017, 32, 53-63.	3.9	77
68	Peduncolopontine nucleus stimulation in progressive supranuclear palsy: a randomised trial. Journal of Neurology, Neurosurgery and Psychiatry, 2017, 88, 613-616.	1.9	24
69	Preventing Parkinson disease by vagotomy. Neurology, 2017, 88, 1982-1983.	1.1	9
70	High frequency stimulation of the infralimbic cortex induces morphological changes in rat hippocampal neurons. Brain Stimulation, 2017, 10, 315-323.	1.6	11
71	Subcallosal cingulate deep brain stimulation for treatment-resistant depression: a multisite, randomised, sham-controlled trial. Lancet Psychiatry,the, 2017, 4, 839-849.	7.4	382
72	Lateral hypothalamic activity indicates hunger and satiety states in humans. Annals of Clinical and Translational Neurology, 2017, 4, 897-901.	3.7	19

#	Article	IF	Citations
73	Anatomic Targeting of the Optimal Location for Thalamic Deep Brain Stimulation in Patients with Essential Tremor. World Neurosurgery, 2017, 107, 168-174.	1.3	20
74	Subthalamic Nucleus Deep Brain Stimulation: Basic Concepts and Novel Perspectives. ENeuro, 2017, 4, ENEURO.0140-17.2017.	1.9	106
75	Disrupted Nodal and Hub Organization Account for Brain Network Abnormalities in Parkinson's Disease. Frontiers in Aging Neuroscience, 2016, 8, 259.	3.4	53
76	Reply to: Deep Brain Stimulation for Depression: Is It a Gray or White "Matter�. Biological Psychiatry, 2016, 80, e45.	1.3	2
77	Diffusion tensor imaging and deep brain stimulation. Expert Review of Medical Devices, 2016, 13, 615-617.	2.8	2
78	Longâ€term doubleâ€blinded unilateral pedunculopontine area stimulation in Parkinson's disease. Movement Disorders, 2016, 31, 1570-1574.	3.9	47
79	Effects of A1 receptor agonist/antagonist on spontaneous seizures in pilocarpine-induced epileptic rats. Epilepsy and Behavior, 2016, 61, 168-173.	1.7	16
80	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Techniques, Side Effects, and Postoperative Imaging. Stereotactic and Functional Neurosurgery, 2016, 94, 307-319.	1.5	54
81	Pedunculopontine Nucleus Region Deep Brain Stimulation in Parkinson Disease: Surgical Anatomy and Terminology. Stereotactic and Functional Neurosurgery, 2016, 94, 298-306.	1.5	452
82	Deep brain stimulation improves behavior and modulates neural circuits in a rodent model of schizophrenia. Experimental Neurology, 2016, 283, 142-150.	4.1	48
83	Deep Brain Stimulation in Animal Models of Fear, Anxiety, and Posttraumatic Stress Disorder. Neuropsychopharmacology, 2016, 41, 2810-2817.	5.4	49
84	Deep brain stimulation of the ventromedial prefrontal cortex causes reorganization of neuronal processes and vasculature. NeuroImage, 2016, 125, 422-427.	4.2	41
85	Deep Brain Stimulation. Neuroscientist, 2016, 22, 332-345.	3.5	53
86	In Reply. Neurosurgery, 2015, 77, E156-E157.	1.1	0
87	Deep brain stimulation of the subthalamic nucleus preferentially alters the translational profile of striatopallidal neurons in an animal model of Parkinson's disease. Frontiers in Cellular Neuroscience, 2015, 9, 221.	3.7	16
88	Imaging Striatal Microglial Activation in Patients with Parkinson's Disease. PLoS ONE, 2015, 10, e0138721.	2.5	95
89	Replacement of Asymmetric Synaptic Profiles in the Molecular Layer of Dentate Gyrus Following Cycloheximide in the Pilocarpine Model in Rats. Frontiers in Psychiatry, 2015, 6, 157.	2.6	6
90	Acute high frequency stimulation of the prefrontal cortex or nucleus accumbens does not increase hippocampal neurogenesis in rats. Journal of Psychiatric Research, 2015, 68, 27-29.	3.1	12

#	Article	IF	Citations
91	Stimulating the brain for epilepsy. Neurology, 2015, 84, 768-769.	1.1	8
92	Towards a better preclinical model of PTSD: Characterizing animals with weak extinction, maladaptive stress responses and low plasma corticosterone. Journal of Psychiatric Research, 2015, 61, 158-165.	3.1	31
93	Paired Pulse Depression in the Subcallosal Cingulate Region of Depression Patients. Biological Psychiatry, 2015, 78, e3-e4.	1.3	7
94	Chronic deep brain stimulation of the rat ventral medial prefrontal cortex disrupts hippocampal–prefrontal coherence. Experimental Neurology, 2015, 269, 1-7.	4.1	11
95	Rapid Modulation of Protein Expression in the Rat Hippocampus Following Deep Brain Stimulation of the Fornix. Brain Stimulation, 2015, 8, 1058-1064.	1.6	66
96	Early postnatal nociceptive stimulation results in deficits of spatial memory in male rats. Neurobiology of Learning and Memory, 2015, 125, 120-125.	1.9	11
97	Antidepressant-like Effects of Medial Forebrain Bundle Deep Brain Stimulation in Rats are not Associated With Accumbens Dopamine Release. Brain Stimulation, 2015, 8, 708-713.	1.6	29
98	Effects of Anterior Thalamic Nucleus Deep Brain Stimulation in Chronic Epileptic Rats. PLoS ONE, 2014, 9, e97618.	2.5	57
99	Role of adenosine in the antiepileptic effects of deep brain stimulation. Frontiers in Cellular Neuroscience, 2014, 8, 312.	3.7	33
100	Changes in Hippocampal Volume are Correlated with Cell Loss but Not with Seizure Frequency in Two Chronic Models of Temporal Lobe Epilepsy. Frontiers in Neurology, 2014, 5, 111.	2.4	36
101	Deep Brain Stimulation for Obsessive-Compulsive Disorder. Neurosurgery, 2014, 75, 327-333.	1.1	86
102	Supraorbital Stimulation Does Not Induce an Antidepressant-like Response in Rats. Brain Stimulation, 2014, 7, 301-303.	1.6	3
103	Neural overlap between resting state and self-relevant activity in human subcallosal cingulate cortex – Single unit recording in an intracranial study. Cortex, 2014, 60, 139-144.	2.4	17
104	Deep brain stimulation in rats: Different targets induce similar antidepressant-like effects but influence different circuits. Neurobiology of Disease, 2014, 71, 205-214.	4.4	74
105	Augmentative therapies do not potentiate the antidepressant-like effects of deep brain stimulation in rats. Journal of Affective Disorders, 2014, 161, 87-90.	4.1	10
106	Temporal alignment of electrocorticographic recordings for upper limb movement. Frontiers in Neuroscience, 2014, 8, 431.	2.8	5
107	Subcallosal cingulate deep brain stimulation for treatment-refractory anorexia nervosa: a phase 1 pilot trial. Lancet, The, 2013, 381, 1361-1370.	13.7	236
108	Deep Brain Stimulation for Psychiatric Disease: Contributions and Validity of Animal Models. Science Translational Medicine, 2012, 4, 142rv8.	12.4	124

#	Article	IF	Citations
109	Deep Brain Stimulation Reverses Anhedonic-Like Behavior in a Chronic Model of Depression: Role of Serotonin and Brain Derived Neurotrophic Factor. Biological Psychiatry, 2012, 71, 30-35.	1.3	142
110	Preclinical Studies Modeling Deep Brain Stimulation for Depression. Biological Psychiatry, 2012, 72, 916-923.	1.3	61
111	The Subcallosal Cingulate Gyrus in the Context of Major Depression. Biological Psychiatry, 2011, 69, 301-308.	1.3	404
112	Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone. Experimental Neurology, 2011, 232, 100-104.	4.1	97
113	The pedunculopontine nucleus as a target for deep brain stimulation. Journal of Neural Transmission, 2011, 118, 1461-1468.	2.8	69
114	Reply: Where are the somatosensory evoked potentials recorded from DBS leads implanted in the human pedunculopontine tegmental nucleus generated?. Movement Disorders, 2011, 26, 1573-1574.	3.9	2
115	Neurogenic hippocampal targets of deep brain stimulation. Journal of Comparative Neurology, 2011, 519, spc1-spc1.	1.6	0
116	Pain Relief and Functional Recovery in Patients with Complex Regional Pain Syndrome after Motor Cortex Stimulation. Stereotactic and Functional Neurosurgery, 2011, 89, 167-172.	1.5	34
117	Effects of different stimulation parameters on the antidepressant-like response of medial prefrontal cortex deep brain stimulation in rats. Journal of Psychiatric Research, 2010, 44, 683-687.	3.1	128
118	Deep brain stimulation in clinical trials and animal models of depression. European Journal of Neuroscience, 2010, 32, 1109-1117.	2.6	67
119	Antidepressant-Like Effects of Medial Prefrontal Cortex Deep Brain Stimulation in Rats. Biological Psychiatry, 2010, 67, 117-124.	1.3	284
120	Anterior thalamus deep brain stimulation at high current impairs memory in rats. Experimental Neurology, 2010, 225, 154-162.	4.1	71
121	DEEP BRAIN STIMULATION FOR THE TREATMENT OF EPILEPSY. International Journal of Neural Systems, 2009, 19, 213-226.	5.2	105
122	Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: critical review of the literature. Journal of Neurosurgery, 2009, 110, 251-256.	1.6	211
123	Deep brain stimulation of the subcallosal cingulate gyrus for depression: anatomical location of active contacts in clinical responders and a suggested guideline for targeting. Journal of Neurosurgery, 2009, 111, 1209-1215.	1.6	143
124	Deep brain stimulation: current and future perspectives. Neurosurgical Focus, 2009, 27, E2.	2.3	67
125	Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Annals of Neurology, 2008, 63, 119-123.	5.3	455
126	Deep brain stimulation of the anterior nucleus of the thalamus: Effects of electrical stimulation on pilocarpine-induced seizures and status epilepticus. Epilepsy Research, 2008, 78, 117-123.	1.6	113

#	Article	IF	Citations
127	Subcallosal Cingulate Gyrus Deep Brain Stimulation for Treatment-Resistant Depression. Biological Psychiatry, 2008, 64, 461-467.	1.3	865
128	Location of Active Contacts in Patients with Primary Dystonia Treated with Globus Pallidus Deep Brain Stimulation. Operative Neurosurgery, 2008, 62, ONS217-ONS225.	0.8	34
129	BILATERAL SUBTHALAMIC NUCLEUS STIMULATION FOR PARKINSON'S DISEASE. Neurosurgery, 2008, 62, 863-74.	1.1	16
130	Surgery for other movement disorders: dystonia, tics. Current Opinion in Neurology, 2007, 20, 470-476.	3.6	29
131	The pedunculopontine nucleus and movement disorders: Anatomy and the role for deep brain stimulation. Parkinsonism and Related Disorders, 2007, 13, S276-S280.	2.2	57
132	Hardware-Related Complications of Deep Brain Stimulation: A Review of the Published Literature. Stereotactic and Functional Neurosurgery, 2006, 84, 248-251.	1.5	197
133	Deep brain stimulation for chronic neuropathic pain: Long-term outcome and the incidence of insertional effect. Pain, 2006, 125, 188-196.	4.2	180
134	The Motor Thalamus in Neurosurgery. Neurosurgery, 2006, 58, 146-158.	1.1	65
135	Bilateral Subthalamic Nucleus Stimulation for Parkinson's Disease: A Systematic Review of the Clinical Literature. Neurosurgery, 2005, 56, 1313-1324.	1.1	229
136	Deep Brain Stimulation for Treatment-Resistant Depression. Neuron, 2005, 45, 651-660.	8.1	3,560
137	The subthalamic nucleus in the context of movement disorders. Brain, 2004, 127, 4-20.	7.6	507
138	Special lecture: Brain stimulation: perspectives for the future. Clinical Neurosurgery, 2004, 51, 271-4.	0.2	2
139	Intraventricular pressure monitoring in patients with thalamic and ganglionic hemorrhages. Arquivos De Neuro-Psiquiatria, 2003, 61, 376-380.	0.8	14
140	Physiology and Pathophysiology of Parkinson's Disease. Annals of the New York Academy of Sciences, 2003, 991, 15-21.	3.8	51