Tristan L'Ecuyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6024942/publications.pdf

Version: 2024-02-01

180 papers

9,878 citations

51 h-index 93 g-index

205 all docs 205 docs citations

205 times ranked 7826 citing authors

#	Article	IF	CITATIONS
1	An update on Earth's energy balance in light of the latest global observations. Nature Geoscience, 2012, 5, 691-696.	12.9	703
2	CloudSat mission: Performance and early science after the first year of operation. Journal of Geophysical Research, 2008, 113 , .	3.3	578
3	Dreary state of precipitation in global models. Journal of Geophysical Research, 2010, 115, .	3.3	533
4	Evaluation of cloud and water vapor simulations in CMIP5 climate models using NASA "A‶rain― satellite observations. Journal of Geophysical Research, 2012, 117, .	3.3	316
5	The contribution of cloud and radiation anomalies to the 2007 Arctic sea ice extent minimum. Geophysical Research Letters, 2008, 35, .	4.0	290
6	Rainfall retrieval over the ocean with spaceborne Wâ€band radar. Journal of Geophysical Research, 2009, 114, .	3.3	279
7	The Observed State of the Water Cycle in the Early Twenty-First Century. Journal of Climate, 2015, 28, 8289-8318.	3.2	230
8	Touring the atmosphere aboard the A-Train. Physics Today, 2010, 63, 36-41.	0.3	219
9	The role of cloud phase in Earth's radiation budget. Journal of Geophysical Research D: Atmospheres, 2017, 122, 2559-2578.	3.3	178
10	CloudSat and CALIPSO within the A-Train: Ten Years of Actively Observing the Earth System. Bulletin of the American Meteorological Society, 2018, 99, 569-581.	3.3	171
11	A Multisensor Perspective on the Radiative Impacts of Clouds and Aerosols. Journal of Applied Meteorology and Climatology, 2013, 52, 853-871.	1.5	169
12	Clouds enhance Greenland ice sheet meltwater runoff. Nature Communications, 2016, 7, 10266.	12.8	164
13	The Observed State of the Energy Budget in the Early Twenty-First Century. Journal of Climate, 2015, 28, 8319-8346.	3.2	160
14	Rainfall Climate Regimes: The Relationship of Regional TRMM Rainfall Biases to the Environment. Journal of Applied Meteorology and Climatology, 2006, 45, 434-454.	1.5	152
15	Impact of clouds on atmospheric heating based on the RO4 CloudSat fluxes and heating rates data set. Journal of Geophysical Research, 2008, 113 , .	3.3	131
16	The retrieval of warm rain from CloudSat. Journal of Geophysical Research, 2011, 116, .	3.3	129
17	Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis. Journal of Geophysical Research D: Atmospheres, 2013, 118, 8166-8184.	3.3	127
18	Evaluation of current and projected Antarctic precipitation in CMIP5 models. Climate Dynamics, 2017, 48, 225-239.	3.8	125

#	Article	IF	CITATIONS
19	How much snow falls on the Antarctic ice sheet?. Cryosphere, 2014, 8, 1577-1587.	3.9	124
20	Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance. Frontiers in Marine Science, $2019, 6, .$	2.5	123
21	Recent Advances in Arctic Cloud and Climate Research. Current Climate Change Reports, 2016, 2, 159-169.	8.6	120
22	Constraining cloud lifetime effects of aerosols using Aâ€Train satellite observations. Geophysical Research Letters, 2012, 39, .	4.0	117
23	Observational constraints on Arctic Ocean clouds and radiative fluxes during the early 21st century. Journal of Geophysical Research D: Atmospheres, 2013, 118, 7219-7236.	3.3	114
24	An Estimation-Based Precipitation Retrieval Algorithm for Attenuating Radars. Journal of Applied Meteorology and Climatology, 2002, 41, 272-285.	1.7	103
25	Observing Convective Aggregation. Surveys in Geophysics, 2017, 38, 1199-1236.	4.6	102
26	The Global Character of the Flux of Downward Longwave Radiation. Journal of Climate, 2012, 25, 2329-2340.	3.2	99
27	An overview of the ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS) project: aerosolâ \in "cloudâ \in "radiation interactions in the southeast Atlantic basin. Atmospheric Chemistry and Physics, 2021, 21, 1507-1563.	4.9	97
28	The Distribution of Rainfall over Oceans from Spaceborne Radars. Journal of Applied Meteorology and Climatology, 2010, 49, 535-543.	1.5	93
29	A Shallow Cumuliform Snowfall Census Using Spaceborne Radar. Journal of Hydrometeorology, 2016, 17, 1261-1279.	1.9	91
30	The Madden–Julian Oscillation Recorded in Early Observations from the Tropical Rainfall Measuring Mission (TRMM). Journals of the Atmospheric Sciences, 2006, 63, 2777-2794.	1.7	90
31	Diagnosis of regimeâ€dependent cloud simulation errors in CMIP5 models using "Aâ€Train―satellite observations and reanalysis data. Journal of Geophysical Research D: Atmospheres, 2013, 118, 2762-2780.	3.3	90
32	Observational Evidence for the Mutual Regulation of the Tropical Hydrological Cycle and Tropical Sea Surface Temperatures. Journal of Climate, 2004, 17, 2213-2224.	3.2	89
33	Estimating snow microphysical properties using collocated multisensor observations. Journal of Geophysical Research D: Atmospheres, 2014, 119, 8941-8961.	3.3	87
34	Vertical Diabatic Heating Structure of the MJO: Intercomparison between Recent Reanalyses and TRMM Estimates. Monthly Weather Review, 2011, 139, 3208-3223.	1.4	84
35	A Comparison of Precipitation Occurrence from the NCEP Stage IV QPE Product and the CloudSat Cloud Profiling Radar. Journal of Hydrometeorology, 2014, 15, 444-458.	1.9	81
36	Global observations of aerosol impacts on precipitation occurrence in warm maritime clouds. Journal of Geophysical Research, 2009, 114 , .	3.3	80

#	Article	IF	Citations
37	Sugar, gravel, fish and flowers: Mesoscale cloud patterns in the trade winds. Quarterly Journal of the Royal Meteorological Society, 2020, 146, 141-152.	2.7	78
38	Estimates of Tropical Diabatic Heating Profiles: Commonalities and Uncertainties. Journal of Climate, 2010, 23, 542-558.	3.2	73
39	Influence of Ice Particle Surface Roughening on the Global Cloud Radiative Effect. Journals of the Atmospheric Sciences, 2013, 70, 2794-2807.	1.7	72
40	Variability in the Characteristics of Precipitation Systems in the Tropical Pacific. Part I: Spatial Structure. Journal of Climate, 2005, 18, 823-840.	3.2	71
41	How often does it rain over the global oceans? The perspective from CloudSat. Geophysical Research Letters, 2009, 36, .	4.0	68
42	Polar clouds and radiation in satellite observations, reanalyses, and climate models. Geophysical Research Letters, 2017, 44, 3355-3364.	4.0	68
43	The impact of precipitating ice and snow on the radiation balance in global climate models. Geophysical Research Letters, 2011, 38, n/a-n/a.	4.0	66
44	Investigation of the 2006 drought and 2007 flood extremes at the Southern Great Plains through an integrative analysis of observations. Journal of Geophysical Research, 2011, 116 , .	3.3	64
45	Detecting the Ratio of Rain and Cloud Water in Low-Latitude Shallow Marine Clouds. Journal of Applied Meteorology and Climatology, 2011, 50, 419-432.	1.5	62
46	The Evaluation of CloudSat and CALIPSO Ice Microphysical Products Using Ground-Based Cloud Radar and Lidar Observations. Journal of Atmospheric and Oceanic Technology, 2010, 27, 793-810.	1.3	59
47	GPM Satellite Simulator over Ground Validation Sites. Bulletin of the American Meteorological Society, 2013, 94, 1653-1660.	3.3	59
48	Response of the lower troposphere to moisture intrusions into the Arctic. Geophysical Research Letters, 2017, 44, 2527-2536.	4.0	58
49	Radiative heating characteristics of Earth's cloudy atmosphere from vertically resolved active sensors. Geophysical Research Letters, 2013, 40, 624-630.	4.0	56
50	Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part I: Liquid Clouds. Journal of Applied Meteorology and Climatology, 2006, 45, 20-41.	1.5	55
51	Observations of aerosolâ€induced convective invigoration in the tropical east Atlantic. Journal of Geophysical Research D: Atmospheres, 2014, 119, 3963-3975.	3.3	55
52	The impact of explicit cloud boundary information on ice cloud microphysical property retrievals from infrared radiances. Journal of Geophysical Research, 2003, 108, n/a-n/a.	3.3	54
53	Spectral Retrieval of Latent Heating Profiles from TRMM PR Data. Part IV: Comparisons of Lookup Tables from Two- and Three-Dimensional Cloud-Resolving Model Simulations. Journal of Climate, 2009, 22, 5577-5594.	3.2	53
54	Evidence for the impact of aerosols on the onset and microphysical properties of rainfall from a combination of satellite observations and cloudâ€resolving model simulations. Journal of Geophysical Research, 2008, 113, .	3.3	51

#	Article	IF	CITATIONS
55	Scaleâ€Aware and Definitionâ€Aware Evaluation of Modeled Nearâ€Surface Precipitation Frequency Using CloudSat Observations. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4294-4309.	3.3	50
56	CloudSat Precipitation Profiling Algorithm—Model Description. Journal of Applied Meteorology and Climatology, 2010, 49, 991-1003.	1.5	49
57	The Earth's energy balance. Atmospheric Research, 2015, 166, 195-203.	4.1	49
58	Impacts of Cloud Droplet–Nucleating Aerosols on Shallow Tropical Convection. Journals of the Atmospheric Sciences, 2015, 72, 1369-1385.	1.7	49
59	CloudSat snowfall estimates over Antarctica and the Southern Ocean: An assessment of independent retrieval methodologies and multi-year snowfall analysis. Atmospheric Research, 2018, 213, 121-135.	4.1	49
60	The Tropical Oceanic Energy Budget from the TRMM Perspective. Part I: Algorithm and Uncertainties. Journal of Climate, 2003, 16, 1967-1985.	3.2	48
61	Intercomparison of snowfall estimates derived from the CloudSat Cloud Profiling Radar and the ground-based weather radar network over Sweden. Atmospheric Measurement Techniques, 2015, 8, 5009-5021.	3.1	48
62	Objective Assessment of the Information Content of Visible and Infrared Radiance Measurements for Cloud Microphysical Property Retrievals over the Global Oceans. Part II: Ice Clouds. Journal of Applied Meteorology and Climatology, 2006, 45, 42-62.	1.5	47
63	Characterization of video disdrometer uncertainties and impacts on estimates of snowfall rate and radar reflectivity. Atmospheric Measurement Techniques, 2013, 6, 3635-3648.	3.1	47
64	Reassessing the Effect of Cloud Type on Earth's Energy Balance in the Age of Active Spaceborne Observations. Part I: Top of Atmosphere and Surface. Journal of Climate, 2019, 32, 6197-6217.	3.2	46
65	Observational Evidence Linking Arctic Supercooled Liquid Cloud Biases in CESM to Snowfall Processes. Journal of Climate, 2017, 30, 4477-4495.	3.2	45
66	Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia. Journal of Applied Meteorology and Climatology, 2014, 53, 456-478.	1.5	44
67	Evaluation of Antarctic snowfall in global meteorological reanalyses. Atmospheric Research, 2017, 190, 104-112.	4.1	42
68	A 10-Year Climatology of Tropical Radiative Heating and Its Vertical Structure from TRMM Observations. Journal of Climate, 2010, 23, 519-541.	3.2	41
69	Arctic Observation and Reanalysis Integrated System: A New Data Product for Validation and Climate Study. Bulletin of the American Meteorological Society, 2016, 97, 907-916.	3.3	41
70	MJO Signals in Latent Heating: Results from TRMM Retrievals. Journals of the Atmospheric Sciences, 2010, 67, 3488-3508.	1.7	39
71	Low cloud precipitation climatology in the southeastern Pacific marine stratocumulus region using CloudSat. Environmental Research Letters, 2013, 8, 014027.	5.2	39
72	Aerosol impacts on drizzle properties in warm clouds from ARM Mobile Facility maritime and continental deployments. Journal of Geophysical Research D: Atmospheres, 2014, 119, 4136-4148.	3.3	38

#	Article	IF	CITATIONS
73	Microphysical Constraints on Millimeter-Wavelength Scattering Properties of Snow Particles. Journal of Applied Meteorology and Climatology, 2015, 54, 909-931.	1.5	37
74	Identifying multiple $\hat{\mathbf{s}}$ cattering $\hat{\mathbf{s}}$ effected profiles in CloudSat observations over the oceans. Journal of Geophysical Research, 2008, 113, .	3.3	36
75	Exploring the error characteristics of thin ice cloud property retrievals using a Markov chain Monte Carlo algorithm. Journal of Geophysical Research, 2008, 113, .	3.3	36
76	A Mechanism of Tropical Convection Inferred from Observed Variability in the Moist Static Energy Budget. Journals of the Atmospheric Sciences, 2014, 71, 3747-3766.	1.7	36
77	The Tropical Atmospheric Energy Budget from the TRMM Perspective. Part II: Evaluating GCM Representations of the Sensitivity of Regional Energy and Water Cycles to the 1998–99 ENSO Cycle. Journal of Climate, 2007, 20, 4548-4571.	3.2	34
78	Reducing the aerosol forcing uncertainty using observational constraints on warm rain processes. Science Advances, 2020, 6, eaaz6433.	10.3	33
79	An uncertainty model for Bayesian Monte Carlo retrieval algorithms: Application to the TRMM observing system. Quarterly Journal of the Royal Meteorological Society, 2002, 128, 1713-1737.	2.7	32
80	Information content of near $\hat{a} \in \hat{a}$ nfrared spaceborne multiangular polarization measurements for aerosol retrievals. Journal of Geophysical Research, 2007, 112, .	3.3	32
81	Evaluating specific error characteristics of microwaveâ€derived cloud liquid water products. Geophysical Research Letters, 2007, 34, .	4.0	31
82	Simultaneous retrievals of column ozone and aerosol optical properties from direct and diffuse solar irradiance measurements. Journal of Geophysical Research, 2005, 110, .	3.3	30
83	Performance assessment of a five-channel estimation-based ice cloud retrieval scheme for use over the global oceans. Journal of Geophysical Research, 2007, 112, .	3.3	30
84	Combining Satellite Microwave Radiometer and Radar Observations to Estimate Atmospheric Heating Profiles. Journal of Climate, 2009, 22, 6356-6376.	3.2	30
85	The Role of Clouds in Modulating Global Aerosol Direct Radiative Effects in Spaceborne Active Observations and the Community Earth System Model. Journal of Climate, 2015, 28, 2986-3003.	3.2	30
86	How Does Ground Clutter Affect CloudSat Snowfall Retrievals Over Ice Sheets?. IEEE Geoscience and Remote Sensing Letters, 2019, 16, 342-346.	3.1	30
87	Vertical Heating Structures Associated with the MJO as Characterized by TRMM Estimates, ECMWF Reanalyses, and Forecasts: A Case Study during 1998/99 Winter. Journal of Climate, 2009, 22, 6001-6020.	3.2	29
88	Using CALIOP to estimate cloud-field base height and its uncertainty: the Cloud Base Altitude Spatial Extrapolator (CBASE) algorithm and dataset. Earth System Science Data, 2018, 10, 2279-2293.	9.9	28
89	Impact of Cloud-Nucleating Aerosols in Cloud-Resolving Model Simulations of Warm-Rain Precipitation in the East China Sea. Journals of the Atmospheric Sciences, 2010, 67, 3916-3930.	1.7	27
90	WRFâ€"SBM Simulations of Melting-Layer Structure in Mixed-Phase Precipitation Events Observed during LPVEx. Journal of Applied Meteorology and Climatology, 2014, 53, 2710-2731.	1.5	26

#	Article	IF	Citations
91	Considering the radiative effects of snow on tropical Pacific Ocean radiative heating profiles in contemporary GCMs using Aâ€√rain observations. Journal of Geophysical Research D: Atmospheres, 2016, 121, 1621-1636.	3.3	26
92	Observationâ€Based Radiative Kernels From CloudSat/CALIPSO. Journal of Geophysical Research D: Atmospheres, 2019, 124, 5431-5444.	3.3	26
93	Diurnal Cycle of Convection during the 2004 North American Monsoon Experiment. Journal of Climate, 2010, 23, 1060-1078.	3.2	25
94	Equatorial Asymmetry of the East Pacific ITCZ: Observational Constraints on the Underlying Processes. Journal of Climate, 2011, 24, 1784-1800.	3.2	25
95	Overview of Temporal Experiment for Storms and Tropical Systems (TEMPEST) CubeSat constellation mission., 2015,,.		25
96	Near-Real-Time Applications of CloudSat Data. Journal of Applied Meteorology and Climatology, 2008, 47, 1982-1994.	1.5	24
97	Cloud occurrences and cloud radiative effects (CREs) from CERESâ€CALIPSOâ€CloudSatâ€MODIS (CCCM) and CloudSat radarâ€idar (RL) products. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8852-8884.	3.3	24
98	Reassessing the Effect of Cloud Type on Earth's Energy Balance in the Age of Active Spaceborne Observations. Part II: Atmospheric Heating. Journal of Climate, 2019, 32, 6219-6236.	3.2	23
99	New Estimates of Aerosol Direct Radiative Effects and Forcing From Aâ€Train Satellite Observations. Geophysical Research Letters, 2019, 46, 8338-8346.	4.0	23
100	Quantifying variations in shortwave aerosol–cloud–radiation interactions using local meteorology and cloud state constraints. Atmospheric Chemistry and Physics, 2019, 19, 6251-6268.	4.9	23
101	Toward an Algorithm for Estimating Latent Heat Release in Warm Rain Systems. Journal of Atmospheric and Oceanic Technology, 2016, 33, 1309-1329.	1.3	22
102	Pixelâ€scale assessment and uncertainty analysis of AIRS and MODIS ice cloud optical thickness and effective radius. Journal of Geophysical Research D: Atmospheres, 2015, 120, 11,669.	3.3	21
103	A variational technique to estimate snowfall rate from coincident radar, snowflake, and fall-speed observations. Atmospheric Measurement Techniques, 2017, 10, 2557-2571.	3.1	21
104	How Much Do Clouds Mask the Impacts of Arctic Sea Ice and Snow Cover Variations? Different Perspectives from Observations and Reanalyses. Atmosphere, 2019, 10, 12.	2.3	21
105	The Southeast Pacific Warm Band and Double ITCZ. Journal of Climate, 2010, 23, 1189-1208.	3.2	20
106	An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet. Journal of Geophysical Research, 2008, 113, .	3.3	19
107	Observed Self-Similarity of Precipitation Regimes over the Tropical Oceans. Journal of Climate, 2010, 23, 2686-2698.	3.2	19
108	A satellite perspective on cloud water to rain water conversion rates and relationships with environmental conditions. Journal of Geophysical Research D: Atmospheres, 2013, 118, 6643-6650.	3.3	19

#	Article	IF	CITATIONS
109	Evaluation of CloudSat snowfall rate profiles by a comparison with in situ micro-rain radar observations in East Antarctica. Cryosphere, 2019, 13, 943-954.	3.9	19
110	Estimating precipitation susceptibility in warm marine clouds using multi-sensor aerosol and cloud products from A-Train satellites. Atmospheric Chemistry and Physics, 2018, 18, 1763-1783.	4.9	18
111	The vertical structure of cloud radiative heating over the Indian subcontinent during summer monsoon. Atmospheric Chemistry and Physics, 2015, 15, 11557-11570.	4.9	17
112	Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations. Surveys in Geophysics, 2017, 38, 1257-1282.	4.6	17
113	Arctic Clouds and Precipitation in the Community Earth System Model Version 2. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2020JD032521.	3.3	17
114	How much snow falls in the world's mountains? A first look at mountain snowfall estimates in A-train observations and reanalyses. Cryosphere, 2020, 14, 3195-3207.	3.9	17
115	A Global Assessment of the Spatial Distribution of Precipitation Occurrence. Journal of Applied Meteorology and Climatology, 2015, 54, 2179-2197.	1.5	16
116	Saharan dust, convective lofting, aerosol enhancement zones, and potential impacts on ice nucleation in the tropical upper troposphere. Journal of Geophysical Research D: Atmospheres, 2017, 122, 8833-8851.	3.3	16
117	Global Character of Latent Heat Release in Oceanic Warm Rain Systems. Journal of Geophysical Research D: Atmospheres, 2018, 123, 4797-4817.	3.3	16
118	Evaluation of midlatitude clouds in a largeâ€scale highâ€resolution simulation using CloudSat observations. Journal of Geophysical Research, 2010, 115, .	3.3	15
119	Influence of gravity wave temperature anomalies and their vertical gradients on cirrus clouds in the tropical tropopause layer – a satellite-based view. Atmospheric Chemistry and Physics, 2020, 20, 12499-12514.	4.9	15
120	The Vertical Structure of Radiative Heating Rates: A Multimodel Evaluation Using A-Train Satellite Observations. Journal of Climate, 2019, 32, 1573-1590.	3.2	14
121	What millimeter-wavelength radar reflectivity reveals about snowfall: an information-centric analysis. Atmospheric Measurement Techniques, 2021, 14, 869-888.	3.1	14
122	The Polar Radiant Energy in the Far Infrared Experiment: A New Perspective on Polar Longwave Energy Exchanges. Bulletin of the American Meteorological Society, 2021, 102, E1431-E1449.	3.3	14
123	Estimation of Snowfall Properties at a Mountainous Site in Norway Using Combined Radar and In Situ Microphysical Observations. Journal of Applied Meteorology and Climatology, 2019, 58, 1337-1352.	1.5	13
124	Arctic Snowfall from CloudSat Observations and Reanalyses. Journal of Climate, 2020, 33, 2093-2109.	3.2	13
125	Quantifying cloud adjustments and the radiative forcing due to aerosol–cloud interactions in satellite observations of warm marine clouds. Atmospheric Chemistry and Physics, 2020, 20, 6225-6241.	4.9	12
126	An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles. Surveys in Geophysics, 2017, 38, 1237-1254.	4.6	11

#	Article	IF	Citations
127	The Observed Structure and Precipitation Characteristics of Southeast Atlantic Stratocumulus from Airborne Radar during ORACLES 2016–17. Journal of Applied Meteorology and Climatology, 2019, 58, 2197-2215.	1.5	11
128	Satellite observations of snowfall regimes over the Greenland Ice Sheet. Cryosphere, 2020, 14, 4379-4404.	3.9	11
129	Variability in the Characteristics of Precipitation Systems in the Tropical Pacific. Part II: Implications for Atmospheric Heating. Journal of Climate, 2006, 19, 1388-1406.	3.2	10
130	Touring the Atmosphere Aboard the A-Train. AIP Conference Proceedings, 2011, , .	0.4	10
131	Responses of Tropical Ocean Clouds and Precipitation to the Large-Scale Circulation: Atmospheric-Water-Budget-Related Phase Space and Dynamical Regimes. Journal of Climate, 2016, 29, 7127-7143.	3.2	10
132	Observational evidence for the vertical redistribution and scavenging of Saharan dust by tropical cyclones. Geophysical Research Letters, 2017, 44, 6421-6430.	4.0	10
133	CloudSatâ€Inferred Vertical Structure of Snowfall Over the Antarctic Continent. Journal of Geophysical Research D: Atmospheres, 2020, 125, e2019JD031399.	3.3	10
134	Global Snowfall Detection and Measurement. Advances in Global Change Research, 2020, , 699-716.	1.6	10
135	How Frequent is Precipitation over the Contiguous United States? Perspectives from Ground-Based and Spaceborne Radars. Journal of Hydrometeorology, 2017, 18, 1657-1672.	1.9	10
136	Snowfall distribution and its response to the Arctic Oscillation: an evaluation of HighResMIP models in the Arctic using CPR/CloudSat observations. Geoscientific Model Development, 2019, 12, 3759-3772.	3.6	9
137	Toward a Global Map of Raindrop Size Distributions. Part I: Rain-Type Classification and Its Implications for Validating Global Rainfall Products. Journal of Hydrometeorology, 2004, 5, 831-849.	1.9	8
138	The Observed Influence of Tropical Convection on the Saharan Dust Layer. Journal of Geophysical Research D: Atmospheres, 2019, 124, 10896-10912.	3.3	8
139	Information content of visible and midinfrared radiances for retrieving tropical ice cloud properties. Journal of Geophysical Research D: Atmospheres, 2017, 122, 4944-4966.	3.3	7
140	Emerging Trends in Arctic Solar Absorption. Geophysical Research Letters, 2021, 48, .	4.0	7
141	The sensitivity of snowfall to weather states over Sweden. Atmospheric Measurement Techniques, 2017, 10, 3249-3263.	3.1	6
142	Cloud and radiative heating profiles associated with the boreal summer intraseasonal oscillation. Climate Dynamics, 2018, 50, 1485-1494.	3.8	6
143	Assessing the Coupled Influences of Clouds on the Atmospheric Energy and Water Cycles in Reanalyses with A-Train Observations. Journal of Climate, 2018, 31, 8241-8264.	3.2	6
144	How Does Cloud Overlap Affect the Radiative Heating in the Tropical Upper Troposphere/Lower Stratosphere?. Geophysical Research Letters, 2019, 46, 5623-5631.	4.0	6

#	Article	IF	Citations
145	Uncertainty in Forced and Natural Arctic Solar Absorption Variations in CMIP6 Models. Journal of Climate, 2021, 34, 931-948.	3.2	6
146	Remote sensing of tropical tropopause layer radiation balance using Aâ€train measurements. Journal of Geophysical Research, 2008, 113, .	3.3	5
147	Inference of Precipitation in Warm Stratiform Clouds Using Remotely Sensed Observations of the Cloud Top Droplet Size Distribution. Geophysical Research Letters, 2021, 48, e2021GL092547.	4.0	5
148	Observing Convective Aggregation. Space Sciences Series of ISSI, 2017, , 27-64.	0.0	5
149	Local Balance and Variability of Atmospheric Heat Budget over Oceans: Observation and Reanalysis-Based Estimates. Journal of Climate, 2014, 27, 893-913.	3.2	4
150	Joint cloud water path and rainwater path retrievals from airborne ORACLES observations. Atmospheric Chemistry and Physics, 2021, 21, 5513-5532.	4.9	4
151	Global evidence of aerosol-induced invigoration in marine cumulus clouds. Atmospheric Chemistry and Physics, 2021, 21, 15103-15114.	4.9	4
152	Evaluation of radiative heating rate profiles in eight GCMs using A-train satellite observations. AIP Conference Proceedings, 2017, , .	0.4	3
153	Role of Latent Heating Vertical Distribution in the Formation of the Tropical Cold Trap. Journal of Geophysical Research D: Atmospheres, 2019, 124, 7836-7851.	3.3	3
154	Assessment of Sampling Sufficiency for Low-Cost Satellite Missions: Application to PREFIRE. Journal of Atmospheric and Oceanic Technology, 2020, 37, 2283-2298.	1.3	3
155	Status of the CloudSat Mission. Advances in Global Change Research, 2020, , 25-43.	1.6	3
156	Retrieval of Surface Spectral Emissivity in Polar Regions Based on the Optimal Estimation Method. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	3
157	Climate Outcomes of Earth-similar Worlds as a Function of Obliquity and Rotation Rate. Astrophysical Journal, 2022, 933, 62.	4.5	3
158	The Polar Radient Energy in the Far Infrared Experiment (Prefire). , 2019, , .		2
159	High-latitude precipitation: Snowfall regimes at two distinct sites in Scandinavia. Journal of Applied Meteorology and Climatology, 2021, , .	1.5	2
160	The Influence of Atmospheric Rivers on Coldâ€Season Precipitation in the Upper Great Lakes Region. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2021JD034754.	3.3	2
161	Vertical structure of cloud radiative heating in the tropics: confronting the EC-Earth v3.3.1/3P model with satellite observations. Geoscientific Model Development, 2021, 14, 4087-4101.	3.6	2
162	Implications of Warm Rain in Shallow Cumulus and Congestus Clouds for Large-Scale Circulations. Space Sciences Series of ISSI, 2017, , 85-110.	0.0	2

#	Article	IF	CITATIONS
163	A Cloudier Picture of Ice-Albedo Feedback in CMIP6 Models. Frontiers in Earth Science, 2021, 9, .	1.8	2
164	The Global Nature of Earlyâ€Afternoon and Lateâ€Night Convection Through the Eyes of the Aâ€Train. Journal of Geophysical Research D: Atmospheres, 2022, 127, .	3.3	2
165	Spectral retrieval of latent heating profiles from TRMM PR data: comparisons of lookup tables from two- and three-dimensional simulations. Proceedings of SPIE, 2008, , .	0.8	1
166	An Interactive Online Educational Applet for Multiple Frequencies of Radar Observations. Bulletin of the American Meteorological Society, 2019, 100, 747-752.	3.3	1
167	A Relational Vulnerability Analytic: Exploring Hybrid Methodologies for Human Dimensions of Climate Change Research in the Himalayas. , 2020, , 493-524.		1
168	Relating snowfall observations to Greenland ice sheet mass changes: an atmospheric circulation perspective. Cryosphere, 2022, 16, 435-450.	3.9	1
169	<i>CloudSat</i> Precipitation Profiling Algorithm—Model Description. Journal of Applied Meteorology and Climatology, 2010, 49, 991-1003.	1.5	1
170	The surface longwave cloud radiative effect derived from space lidar observations. Atmospheric Measurement Techniques, 2022, 15, 3893-3923.	3.1	1
171	On the information content of satellite radiance observations for cloud microphysical property retrievals., 2005,,.		0
172	Combining space-based active and passive microwave observations to improve global snowfall estimates, , $2011, \ldots$		0
173	Terran World Spectral Simulator. Publications of the Astronomical Society of the Pacific, 2019, 131, 054502.	3.1	0
174	Ground-based far-infrared emissivity measurements with the University of Wisconsin absolute radiance interferometer (ARI). , 2021, , .		0
175	Improving Estimates of the Earth's Radiation Budget with Multispectral and Hyperspectral Satellite Observations. , 2011, , .		0
176	Correction to: An Observational View of Relationships Between Moisture Aggregation, Cloud, and Radiative Heating Profiles. Space Sciences Series of ISSI, 2017, , 83-83.	0.0	0
177	POLAR RADIANT ENERGY IN THE FAR-INFRARED EXPERIMENT (PREFIRE). , 2018, , .		0
178	Evaluation of CloudSat Radiative Kernels Using ARM and CERES Observations and ERA5 Reanalysis. Journal of Geophysical Research D: Atmospheres, 2021, 126, e2020JD034510.	3.3	0
179	Imaging Considerations From a Geostationary Orbit Using the Short Wavelength Side of the Midâ€Infrared Water Vapor Absorption Band. Earth and Space Science, 2022, 9, .	2.6	0
180	Environmental Response in Coupled Energy and Water Cloud Impact Parameters Derived from A-Train Satellites, ERA-Interim, and MERRA-2. Journal of Applied Meteorology and Climatology, 2022, 61, 261-276.	1.5	0