Sergii Gashchak

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6024058/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The IAEA handbook on radionuclide transfer to wildlife. Journal of Environmental Radioactivity, 2013, 121, 55-74.	1.7	92
2	Small Mammals from the Most Radioactive Sites Near the Chornobyl Nuclear Power Plant. Journal of Mammalogy, 1996, 77, 155-170.	1.3	81
3	Concentrations and dose rate estimates of ¹³⁴¹³⁷ cesium and ⁹⁰ strontium in small mammals at chornobyl, Ukraine. Environmental Toxicology and Chemistry, 2000, 19, 305-312.	4.3	68
4	Predicting the radiation exposure of terrestrial wildlife in the Chernobyl exclusion zone: an international comparison of approaches. Journal of Radiological Protection, 2010, 30, 341-373.	1.1	64
5	Radionuclide transfer to wildlife at a â€ ⁻ Reference site' in the Chernobyl Exclusion Zone and resultant radiation exposures. Journal of Environmental Radioactivity, 2020, 211, 105661.	1.7	57
6	Estimating the exposure of small mammals at three sites within the Chernobyl exclusion zone – a test application of the ERICA Tool. Journal of Environmental Radioactivity, 2008, 99, 1496-1502.	1.7	56
7	Consequences of polluted environments on population structure: the bank vole (Clethrionomys) Tj ETQq1 1 0.78	4314 rg₿ 2.4	Г /Qverlock 47
8	Towards solving a scientific controversy – The effects of ionising radiation on the environment. Journal of Environmental Radioactivity, 2020, 211, 106033.	1.7	46
9	High levels of fluctuating asymmetry in populations of Apodemus flavicollis from the most contaminated areas in Chornobyl. Journal of Environmental Radioactivity, 2004, 73, 1-20.	1.7	42
10	Elevated mitochondrial genome variation after 50 generations of radiation exposure in a wild rodent. Evolutionary Applications, 2017, 10, 784-791.	3.1	40
11	Effects of radionuclide contamination on leaf litter decomposition in the Chernobyl exclusion zone. Science of the Total Environment, 2016, 562, 596-603.	8.0	36
12	Accumulation of ¹³⁷ Cesium and ⁹⁰ Strontium from abiotic and biotic sources in rodents at Chornobyl, Ukraine. Environmental Toxicology and Chemistry, 2001, 20, 1927-1935.	4.3	33
13	Exposure to chronic, low-dose rate ?-radiation at Chornobyl does not induce point mutations in Big Blue� mice. Environmental and Molecular Mutagenesis, 2003, 42, 11-18.	2.2	27
14	Findings and recommendations from an international comparison of models and approaches for the estimation of radiological exposure to non-human biota. Radioprotection, 2009, 44, 565-570.	1.0	26
15	Genome-wide DNA methylation changes in two Brassicaceae species sampled alongside a radiation gradient in Chernobyl and Fukushima. Journal of Environmental Radioactivity, 2018, 192, 405-416.	1.7	24
16	Mitochondrial DNA Heteroplasmy in Laboratory Mice Experimentally Enclosed in the Radioactive Chernobyl Environment. Radiation Research, 2003, 159, 458-464.	1.5	22
17	Strontium-90 and caesium-137 activity concentrations in bats in the Chernobyl exclusion zone. Radiation and Environmental Biophysics, 2010, 49, 635-644.	1.4	22
18	Soil nematode assemblages as bioindicators of radiation impact in the Chernobyl Exclusion Zone. Science of the Total Environment, 2014, 490, 161-170.	8.0	22

Sergii Gashchak

#	Article	IF	CITATIONS
19	ENVIRONMENTAL RADIATION MONITORING IN THE CHERNOBYL EXCLUSION ZONEâ€"HISTORY AND RESULTS 25 YEARS AFTER. Health Physics, 2011, 101, 442-485.	0.5	21
20	The transfer of 137Cs and 90Sr to dairy cattle fed fresh herbage collected 3.5 km from the Chernobyl nuclear power plant. Journal of Environmental Radioactivity, 2000, 47, 157-170.	1.7	20
21	Wildfires in the Chornobyl exclusion zone—Risks and consequences. Integrated Environmental Assessment and Management, 2021, 17, 1141-1150.	2.9	20
22	New Information for Systematics, Taxonomy, and Phylogeography of the Rodent GenusApodemus(Sylvaemus) in Ukraine. Journal of Mammalogy, 2007, 88, 330-342.	1.3	19
23	Genetic, epigenetic and microbiome characterisation of an earthworm species (Octolasion lacteum) along a radiation exposure gradient at Chernobyl. Environmental Pollution, 2019, 255, 113238.	7.5	19
24	UNDERSTANDING THE GENETIC CONSEQUENCES OF ENVIRONMENTAL TOXICANT EXPOSURE: CHERNOBYL AS A MODEL SYSTEM. Environmental Toxicology and Chemistry, 2009, 28, 1982.	4.3	18
25	METHOD FOR SIMULTANEOUS 90SR AND 137CS IN-VIVO MEASUREMENTS OF SMALL ANIMALS AND OTHER ENVIRONMENTAL MEDIA DEVELOPED FOR THE CONDITIONS OF THE CHERNOBYL EXCLUSION ZONE. Health Physics, 2011, 101, 383-392.	0.5	18
26	Frequency distributions of 137Cs in fish and mammal populations. Journal of Environmental Radioactivity, 2002, 61, 55-74.	1.7	16
27	RADIATION ECOLOGY ISSUES ASSOCIATED WITH MURINE RODENTS AND SHREWS IN THE CHERNOBYL EXCLUSION ZONE. Health Physics, 2011, 101, 416-430.	0.5	16
28	Variation in chronic radiation exposure does not drive life history divergence among <i>Daphnia </i> populations across the Chernobyl Exclusion Zone. Ecology and Evolution, 2019, 9, 2640-2650.	1.9	16
29	The transfer of 137 Cs, Pu isotopes and 90 Sr to bird, bat and ground-dwelling small mammal species within the Chernobyl exclusion zone. Journal of Environmental Radioactivity, 2016, 153, 231-236.	1.7	15
30	Predicting radionuclide transfer to wild animals: an application of a proposed environmental impact assessment framework to the Chernobyl exclusion zone. Radiation and Environmental Biophysics, 2005, 44, 161-168.	1.4	14
31	Inter-cultivar variation in soil-to-plant transfer of radiocaesium and radiostrontium in Brassica oleracea. Journal of Environmental Radioactivity, 2016, 155-156, 112-121.	1.7	14
32	The transfer of 239/240Pu to cow milk. Journal of Environmental Radioactivity, 2007, 98, 191-204.	1.7	13
33	Radionuclide activity concentrations in two species of reptiles from the Chernobyl exclusion zone. Radioprotection, 2009, 44, 537-542.	1.0	13
34	Impacts of radiation exposure on the bacterial and fungal microbiome of small mammals in the Chernobyl Exclusion Zone. Journal of Animal Ecology, 2021, 90, 2172-2187.	2.8	12
35	Unusual evolution of tree frog populations in the Chernobyl exclusion zone. Evolutionary Applications, 2022, 15, 203-219.	3.1	12
36	VARIATION IN MITOCHONDRIAL DNA CONTROL REGION HAPLOTYPES IN POPULATIONS OF THE BANK VOLE, CLETHRIONOMYS GLAREOLUS, LIVING IN THE CHERNOBYL ENVIRONMENT, UKRAINE. Environmental Toxicology and Chemistry, 2006, 25, 503.	4.3	11

IF # ARTICLE CITATIONS Improvement of modelling capabilities for assessing urban contamination: The EMRAS Urban 1.5 Remediation Working Group. Applied Radiation and Isotopes, 2008, 66, 1741-1744. FREQUENCY DISTRIBUTIONS OF 90SR AND 137CS CONCENTRATIONS IN AN ECOSYSTEM OF THE "RED 38 0.5 11 FORĚST―AREA IN THE CHERNOBYL EXCLUSION ZONE. Health Physics, 2011, 101, 409-415. Brown bear (Ursus arctos L.) in the Chornobyl Exclusion Zone. ĐŸÑ€Đ°Ñ†Ň– Đ¢ĐuÑ€Ň–Đ¾Đ»Đ¾Đ³Ň–Ň‡Đ½Đ¾Ň⊨ Ň~Đ∰¾Đ»Đ Modelling of a large-scale urban contamination situation and remediation alternatives. Journal of 40 1.7 10 Environmental Radioactivity, 2009, 100, 413-421. European bison (Bison bonasus) in the Chornobyl Exclusion Zone (Ukraine) and prospects for its revival. $D\ddot{N} \in D^{\circ}N^{\dagger}N - D \oplus \mu \tilde{N} \in N - D^{3} \oplus D^{3} \oplus D^{3} \to D^{3} \oplus D^{3}$ 0.1 RADIATION DOSE ASSESSMENT FOR THE BIOTA OF TERRESTRIAL ECOSYSTEMS IN THE SHORELINE ZONE OF 42 0.5 9 THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND. Health Physics, 2011, 101, 349-361. Analysis of 129I and 127I in soils of the Chernobyl Exclusion Zone, 29†years after the deposition of 129I. 8.0 Science of the Total Environment, 2019, 692, 966-974. More than thirty years after the Chernobyl accident: What do we know about the effects of radiation 1.7 44 9 on the environment?. Journal of Environmental Radioactivity, 2020, 211, 106108. ASSESSMENT OF 90SR AND 137CS PENETRATION INTO REINFORCED CONCRETE (EXTENT OF "DEEPENINGâ€) 0.5 UNDER NATURAL ATMOSPHERIC CONDITIONS. Health Physics, 2011, 101, 311-320. 46 Radioadaptive Response Following In Utero Low-Dose Irradiation. Radiation Research, 2012, 179, 29. 1.5 8 Ratios of Transfer Coefficients for Radiocesium Transport in Ruminants. Health Physics, 1995, 69, 410-414. Lack of impact of radiation on blood physiology biomarkers of Chernobyl tree frogs. Frontiers in 48 2.0 5 Zoology, 2021, 18, 33. Assessment of radionuclide export from Chernobyl zone via birds 18 years following the accident. 1.0 Radioprotection, 2009, 44, 849-852. Przewalski's horse (Equus ferus przewalskii) in the Chornobyl Exclusion Zone after 20 years of 50 0.2 5 introduction. Theriologia Ukrainica, 2019, 2019, 80-100. Current ionising radiation doses in the Chernobyl Exclusion Zone do not directly impact on soil biological activity. PLoS ONE, 2022, 17, e0263600. Half-lives of self-purification for various isotopes in soils of the Chernobyl Exclusion Zone. 52 1.0 4 Radioprotection, 2009, 44, 909-911. The effects of environmental lowâ€dose irradiation on tolerance to chemotherapeutic agents. 4.3 Environmental Toxicology and Chemistry, 2011, 30, 640-649. Comments on the Paper by Wickliffeet al.(Radiat. Res.159, 458–464, 2003). Radiation Research, 2003, 160, 54 1.5 3

SERGII GASHCHAK

4

610-610.

#	Article	IF	CITATIONS
55	ENVIRONMENTAL PROBLEMS ASSOCIATED WITH DECOMMISSIONING THE CHERNOBYL NUCLEAR POWER PLANT COOLING POND. Health Physics, 2010, 99, 639-648.	0.5	3
56	ASSESSMENT OF BETA PARTICLE FLUX FROM SURFACE CONTAMINATION AS A RELATIVE INDICATOR FOR RADIONUCLIDE DISTRIBUTION ON EXTERNAL SURFACES OF A MULTISTORY BUILDING IN PRIPYAT. Health Physics, 2011, 100, 221-227.	0.5	3
57	Long-term dynamics of radioactive 90Sr and 137Cs contamination of small mammals in the Chernobyl zone. Russian Journal of Ecology, 2007, 38, 181-189.	0.9	2
58	OVERVIEW OF THE COOPERATION BETWEEN THE CHERNOBYL CENTER'S INTERNATIONAL RADIOECOLOGY LABORATORY IN SLAVUTYCH, UKRAINE, AND U.S. RESEARCH CENTERS BETWEEN 2000 AND 2010. Health Physics, 2011, 101, 338-348.	0.5	0
59	XIV Theriological School-Seminar: summary of the workshop (Chornobyl 2007). ĐŸÑ€Đ°Ñ†Ñ– Đ¢ĐµÑ€Ñ–Đ¾Đ»	Đ¾Đ³Ñ−Ì	Ñ ‡Ð ¹∕₂Ð3⁄4Ň