
Michio Naito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023692/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Epitaxial growth of superconducting oxides. , 2022, , 101-136.		0
2	K-doped Ba122 epitaxial thin film on MgO substrate by buffer engineering. Superconductor Science and Technology, 2022, 35, 09LT01.	3.5	5
3	Realization of epitaxial thin films of the superconductor K-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Ba</mml:mi><mml:msub><mml:m Physical Review Materials, 2021, 5, .</mml:m </mml:msub></mml:mrow></mml:math 	i> £ø <td>ເໄ:ເຣi><mmໄ:n< td=""></mmໄ:n<></td>	ເ ໄ:ເຣ i> <mmໄ:n< td=""></mmໄ:n<>
4	Approaching the ultimate superconducting properties of (Ba,K)Fe2As2 by naturally formed low-angle grain boundary networks. NPG Asia Materials, 2021, 13, .	7.9	8
5	Superconductivity over 30 K of Nd2CuO4 Films on CaF2 Substrates. Journal of Superconductivity and Novel Magnetism, 2020, 33, 121-125.	1.8	0
6	Recent progress in thin-film growth of Fe-based superconductors: superior superconductivity achieved by thin films. Superconductor Science and Technology, 2018, 31, 093001.	3.5	44
7	Epitaxial effects in thin films of high- T c cuprates with the K 2 NiF 4 structure. Physica C: Superconductivity and Its Applications, 2018, 546, 84-114.	1.2	12
8	Universal scaling behavior of the upper critical field in strained FeSe _{0.7} Te _{0.3} thin films. New Journal of Physics, 2018, 20, 093012.	2.9	13
9	Crystal growth and metal-insulator transition in two-dimensional layered rare-earth palladates. Physical Review Materials, 2018, 2, .	2.4	4
10	The influence of the in-plane lattice constant on the superconducting transition temperature of FeSe0.7Te0.3 thin films. AIP Advances, 2017, 7, 065015.	1.3	13
11	Molecular beam epitaxy growth of SmFeAs(O,F) films with Tc = 55 K using the new fluorine source I Journal of Applied Physics, 2017, 122, 015306.	FeF3. 2.5	7
12	Molecular beam epitaxy of Nd2PdO4 thin films. AIP Advances, 2017, 7, 075006.	1.3	3
13	Past 10 Years and Recent Progress in the Thin-film Growth of Fe-based Superconductors. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2017, 52, 422-432.	0.1	0
14	Dimensional Crossover in Fe-based Superconductors. TEION KOGAKU (Journal of Cryogenics and) Tj ETQq0 0 0 rg	BT./Overlo	ock 10 Tf 50
15	Direct observation of infinite NiO ₂ planes in LaNiO ₂ films. Applied Physics Express, 2016, 9, 061101.	2.4	56
16	Superconducting tunnel junctions on MgB2 using MgO and CaF2 as a barrier. Physica C: Superconductivity and Its Applications, 2016, 530, 82-86.	1.2	2

18	Growth of iron nitride thin films by molecular beam epitaxy. Journal of Crystal Growth, 2015, 415, 36-40.	1.5	26

Reassessment of the electronic state, magnetism, and superconductivity in high-Tc cuprates with the Nd2CuO4 structure. Physica C: Superconductivity and Its Applications, 2016, 523, 28-54.

Μιςηιο Ναιτο

#	Article	IF	CITATIONS
19	Induced lattice strain in epitaxial Fe-based superconducting films on CaF2 substrates: A comparative study of the microstructures of SmFeAs(O,F), Ba(Fe,Co)2As2, and FeTe0.5Se0.5. Applied Physics Letters, 2014, 104, .	3.3	22
20	Augmented methods for growth and development of novel multi-cation oxides. Proceedings of SPIE, 2014, , .	0.8	8
21	Comparison of reduction agents in the synthesis of infinite-layer LaNiO2 films. Physica C: Superconductivity and Its Applications, 2014, 506, 83-86.	1.2	16
22	Epitaxial strain effect in perovskite RENiO3 films (RE= La–Eu) prepared by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2014, 505, 24-31.	1.2	9
23	Deteriorated superconductivity of MgB2 films due to Al diffusion from Al2O3 substrates: Thermodynamic perspective. Physica C: Superconductivity and Its Applications, 2013, 495, 84-87.	1.2	4
24	Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides. Journal of Crystal Growth, 2013, 378, 184-188.	1.5	32
25	Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2013, 495, 134-140.	1.2	28
26	Emerging superconductivity hidden beneath charge-transfer insulators. Scientific Reports, 2013, 3, 2235.	3.3	55
27	Oxypnictide SmFeAs(O,F) superconductor: a candidate for high–field magnet applications. Scientific Reports, 2013, 3, 2139.	3.3	42
28	High-Tc and high-Jc SmFeAs(O,F) films on fluoride substrates grown by molecular beam epitaxy. Materials Research Society Symposia Proceedings, 2012, 1434, 45.	0.1	38
29	Molecular beam epitaxy growth of Sr1-xKxFe2As2 and Ba1-xKxFe2As2. Materials Research Society Symposia Proceedings, 2012, 1434, 17.	0.1	1
30	RE dependence of superconductivity in parent T'-RE2CuO4 – implication on the nature of superconductivity. Materials Research Society Symposia Proceedings, 2012, 1434, 10.	0.1	0
31	Molecular Beam Epitaxy Growth of Superconducting Ba\$_{1-x}\$K\$_{x}Fe\$_{2}\$As\$_{2}\$ and SmFeAs(O,F) Films. Japanese Journal of Applied Physics, 2012, 51, 010103.	1.5	8
32	As-Grown Superconducting SmFeAs(O,F) Thin Films by Molecular Beam Epitaxy. Applied Physics Express, 2012, 5, 053101.	2.4	12
33	Universal Superconducting Ground State in Nd _{1.85} Ce _{0.15} CuO ₄ and Nd ₂ CuO ₄ . Japanese Journal of Applied Physics, 2012, 51, 010106.	1.5	9
34	Substrate effect on structure and superconductivity in SmFeAs(O,F) epitaxial films. Physica C: Superconductivity and Its Applications, 2012, 475, 10-13.	1.2	16
35	Molecular Beam Epitaxy Growth of Superconducting Ba1-xKxFe2As2and SmFeAs(O,F) Films. Japanese Journal of Applied Physics, 2012, 51, 010103.	1.5	3
36	Universal Superconducting Ground State in Nd _{1.85} Ce _{0.15} CuO ₄ and Nd ₂ CuO ₄ . Japanese Journal of Applied Physics, 2012, 51, 010106.	1.5	2

Μιςηιο Ναιτο

#	Article	IF	CITATIONS
37	Simple Route to Grow High-Quality MgB2Thin Films by Pyrolysis of Decaborane (B10H14) in Mg Vapor. Applied Physics Express, 2011, 4, 073101.	2.4	8
38	Superconductivity in bulk Tâ€2-(La,Sm)2CuO4 prepared via a molten alkaline hydroxide route. Physica C: Superconductivity and Its Applications, 2011, 471, 682-685.	1.2	26
39	RE dependence of superconductivity in parent T′-RE2CuO4. Physica C: Superconductivity and Its Applications, 2011, 471, 686-689.	1.2	9
40	MBE growth of Fe-based superconducting films. Physica C: Superconductivity and Its Applications, 2011, 471, 1167-1173.	1.2	26
41	A study of the doping dependence of Tc in Ba1â^'xKxFe2As2 and Sr1â^'xKxFe2As2 films grown by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2011, 471, 1177-1180.	1.2	20
42	Simple route to grow high-quality MgB2 thin films using decaborane as a boron source. Physica C: Superconductivity and Its Applications, 2011, 471, 1189-1192.	1.2	3
43	High-Tc and high-Jc SmFeAs(O,F) films on fluoride substrates grown by molecular beam epitaxy. Applied Physics Letters, 2011, 99, 232505.	3.3	55
44	Superconducting Parent Compound Pr2CuO4 Achieved by Special Post-Reduction. Materials Research Society Symposia Proceedings, 2011, 1309, 9.	0.1	0
45	MBE growth of FeSe and Sr1â ``xKxFe2As2. Physica C: Superconductivity and Its Applications, 2010, 470, 1468-1472.	1.2	36
46	Preparation of superconducting parent compounds T′-RE2CuO4 by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2010, 470, S88-S89.	1.2	5
47	Generic phase diagram of Nd2â^'Ce CuO4. Physica C: Superconductivity and Its Applications, 2010, 470, S101-S103.	1.2	4
48	Molecular Beam Epitaxy Growth of Superconducting Sr _{1-<i>x</i>} K _{<i>x</i>} Fe ₂ As ₂ and Ba _{1-<i>x</i>} K _{<i>x</i>} Fe ₂ As ₂ . Applied Physics Express, 2010, 3, 093101.	2.4	29
49	All MgB2 Josephson Junctions with Amorphous Boron Barriers. IEICE Transactions on Electronics, 2010, E93-C, 468-472. Synthesis and properties of superconducting <mml:math< td=""><td>0.6</td><td>0</td></mml:math<>	0.6	0
	xmlns:mml="http://www.w3.org/1998/Math/MathML"		

3.2

65

#	Article	IF	CITATIONS
55	Three-dimensional superconductivity and vortex glass transition in. Physica B: Condensed Matter, 2006, 378-380, 447-448.	2.7	0
56	Current Status of Thin-film Synthesis and Junction Fabrication of MgB ₂ and Future Prospects for Device Application. TEION KOGAKU (Journal of Cryogenics and Superconductivity) Tj ETQq0 0 0 rgf	3T¢Qverloo	ck410 Tf 50 6
57	Three-dimensional superconductivity of the structurally two-dimensional superconductor La1.87Y0.13CuO4: study of an angle-dependent critical current density. Superconductor Science and Technology, 2005, 18, 944-947.	3.5	0
58	Low Microwave Surface Resistance in NdBa2Cu3O7-ÎFilms Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2004, 43, L1502-L1505.	1.5	8

59	Electron-doped infinite-layer thin films with TC over 40 K grown on DyScO3 substrates. Applied Physics Letters, 2004, 84, 2136-2138.	3.3	46
60	Tunnel junctions on as-grown MgB2 films. Physica C: Superconductivity and Its Applications, 2004, 408-410, 134-135.	1.2	9
61	MgB2thin films for superconducting electronics. Superconductor Science and Technology, 2004, 17, R1-R18.	3.5	74
62	High-field magnetotransport in strained La2â^'xSrxCuO4 films. Physica C: Superconductivity and Its Applications, 2003, 388-389, 345-346.	1.2	2

63	Vortex pinning in electron-doped cuprate superconductor La2–xCexCuO4. Physica Status Solidi (B): Basic Research, 2003, 236, 412-415.	1.5	5

64 Kondo effect in underdopedn-type superconductors. Physical Review B, 2003, 67, .

65	Phase control in La-214 epitaxial thin films. , 2002, 4811, 140.		14
66	Role of substrates in molecular beam epitaxy growth of superconducting T′-La2â^'xCexCuO4 films. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1082-1086.	1.2	4
67	High-field magnetotransport in strained (La,Sr)2CuO4 films. Physica C: Superconductivity and Its Applications, 2002, 378-381, 195-198.	1.2	9
68	Kondo effect in the normal state of T′-Ln2â^'xCexCuO4 (Ln=La, Pr, Nd). Journal of Physics and Chemistry of Solids, 2002, 63, 1089-1092.	4.0	9
69	Superconducting T′-La2â^'xCexCuO4 films grown by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2001, 357-360, 333-336.	1.2	15
70	New Superconducting Sr2CuO4-δ Thin Films Prepared by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2001, 40, L127-L130.	1.5	18
71	As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy. Applied Physics Letters, 2001, 79, 2046-2048.	3.3	181

⁷²Single-crystalline superconducting thin films of electron-doped infinite-layer compounds grown by
molecular-beam epitaxy. Applied Physics Letters, 2001, 79, 2767-2769.3.355

Μιςηιο Ναιτο

#	Article	IF	CITATIONS
73	New superconducting lead cuprates prepared by molecular beam epitaxy. , 2000, , .		5
74	New superconducting PbSr2CuO5+l̃´prepared by a novel low-temperature synthetic route using molecular beam epitaxy. Physica B: Condensed Matter, 2000, 284-288, 1113-1114.	2.7	2
75	Intrinsic problem of cuprate surface and interface: why good tunnel junctions are difficult to fabricate. Physica C: Superconductivity and Its Applications, 2000, 335, 201-206.	1.2	20
76	A new superconducting barium cuprate prepared by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2000, 338, 29-37.	1.2	16
77	Superconducting T'-La2-xCexCuO4 Films Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2000, 39, L485-L487.	1.5	85
78	New Superconducting Lead Cuprates Prepared by Molecular Beam Epitaxy. , 2000, , 933-938.		0
79	New Superconducting PbSr2CuO5+l̂´Prepared by a Novel Low-Temperature Synthetic Route Using Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L283-L285.	1.5	15
80	Superconducting phenomenology of cuprates: effect of pseudo-gap and other anomalies. Physica C: Superconductivity and Its Applications, 1999, 317-318, 345-352.	1.2	0
81	Transport properties of grain boundary junctions fabricated from hole and electron doped high-Tc superconductors. , 1999, , 117-120.		Ο
82	Reflection high-energy electron diffraction and atomic force microscopy studies on homoepitaxial growth of SrTiO3(001). Physica C: Superconductivity and Its Applications, 1998, 305, 233-250.	1.2	46
83	Oxygen nonstoichiometry of MBE-grown cuprate films to lose or give high-T c superconductivity. , 1998, , .		10
84	A New Superconducting Cuprate Prepared by Low-Temperature Thin-Film Synthesis. , 1998, , 965-970.		0
85	Anisotropic Resistivity of In-Plane-Aligned La2-xSrxCuO4(100) Films on LaSrGaO4(100) Substrates. Japanese Journal of Applied Physics, 1997, 36, 2642-2645.	1.5	2
86	A New Superconducting Cuprate Prepared by Low-Temperature Thin-Film Synthesis in a Ba-Cu-O System. Japanese Journal of Applied Physics, 1997, 36, L341-L344.	1.5	34
87	MBE growth of (La,Sr)2CuO4 and (Nd,Ce)2CuO4 thin films. Physica C: Superconductivity and Its Applications, 1997, 293, 36-43.	1.2	92
88	La2-xSrxCuO4 Thin Films Grown by Reactive Coevaporation. , 1997, , 1005-1010.		0
89	Stoichiometry control of atomic beam fluxes by precipitated impurity phase detection in growth of (Pr,Ce)2CuO4 and (La,Sr)2CuO4 films. Applied Physics Letters, 1995, 67, 2557-2559.	3.3	79
90	Reflection high-energy electron diffraction study on the SrTiO3 surface structure. Physica C: Superconductivity and Its Applications, 1994, 229, 1-11.	1.2	110

Μιςμιο Ναιτο

#	Article	IF	CITATIONS
91	Layered Transition Metal Dichalcogenides. Physics and Chemistry of Materials With Low-dimensional Structures, 1992, , 35-112.	1.0	3
92	A study of the compositional dependence of the quality of In-situ grown YBaCuO films in E-beam coevaporation. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1977-1978.	1.2	3
93	Temperature dependence of anisotropic lower critical fields in (La1â^'xSrx)2CuO4. Physical Review B, 1990, 41, 4823-4826.	3.2	80
94	Broadening Mechanism of Resistive Transition under Magnetic Field in Single Crystalline (La1-xSrx)2CuO4. Japanese Journal of Applied Physics, 1989, 28, L555-L556.	1.5	109
95	Nuclear Magnetic Resonance and Nuclear Quadrupole Resonance Study of181Ta in the Commensurate Charge Density Wave State of 1T-TaS2. Journal of the Physical Society of Japan, 1986, 55, 2410-2421.	1.6	19
96	Electron-Phonon Coupling Constant of BaPb1-xBixO3as Estimated from the McMillan Equation. Journal of the Physical Society of Japan, 1985, 54, 2682-2689.	1.6	34
97	Nonlinear Conductivity and Broad Band Noise of Monoclinic TaS3. Journal of the Physical Society of Japan, 1985, 54, 1912-1922.	1.6	34
98	Nuclear Magnetic Resonance and Nuclear Quadrupole Resonance Study of181Ta in The Commensurate Charge Density Wave State of 1T-TaSe2. Journal of the Physical Society of Japan, 1985, 54, 3946-3955.	1.6	9
99	NMR Study of 181Ta in the Commensurate Charge-Density-Wave State of 1T-TaSe2 and 1T-TaS2 Single Crystals: A Microscopic Investigation of the Three-Dimensional Ordering of the Charge Density Waves. Journal of the Physical Society of Japan, 1984, 53, 1217-1220.	1.6	10
100	Nuclear Quadrupole Resonance in the Charge Density Wave State of 1T-TaS2. Journal of the Physical Society of Japan, 1984, 53, 1610-1613.	1.6	15
101	Electrical Transport Properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2. Journal of the Physical Society of Japan, 1982, 51, 219-227.	1.6	191
102	Galvanomagnetic Effects in the Charge-Density-Wave State of 2H-NbSe2 and 2H-TaSe2. Journal of the Physical Society of Japan, 1982, 51, 228-236.	1.6	34
103	Carrier scattering mechanisms in 2H-TaSe2. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1981, 105, 136-140.	0.9	9
104	Anisotropy of Upper Critical Field in Superconducting 2H-NbS2. Journal of the Physical Society of Japan, 1978, 45, 50-58.	1.6	48