
Michio Naito

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023692/publications.pdf Version: 2024-02-01

Μιζηιο Νλιτο

#	Article	IF	CITATIONS
1	Electrical Transport Properties in 2H-NbS2, -NbSe2, -TaS2 and -TaSe2. Journal of the Physical Society of Japan, 1982, 51, 219-227.	1.6	191
2	As-grown superconducting MgB2 thin films prepared by molecular beam epitaxy. Applied Physics Letters, 2001, 79, 2046-2048.	3.3	181
3	Reflection high-energy electron diffraction study on the SrTiO3 surface structure. Physica C: Superconductivity and Its Applications, 1994, 229, 1-11.	1.2	110
4	Broadening Mechanism of Resistive Transition under Magnetic Field in Single Crystalline (La1-xSrx)2CuO4. Japanese Journal of Applied Physics, 1989, 28, L555-L556.	1.5	109
5	MBE growth of (La,Sr)2CuO4 and (Nd,Ce)2CuO4 thin films. Physica C: Superconductivity and Its Applications, 1997, 293, 36-43.	1.2	92
6	Superconducting T'-La2-xCexCuO4 Films Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2000, 39, L485-L487.	1.5	85
7	Temperature dependence of anisotropic lower critical fields in (La1â^'xSrx)2CuO4. Physical Review B, 1990, 41, 4823-4826.	3.2	80
8	Stoichiometry control of atomic beam fluxes by precipitated impurity phase detection in growth of (Pr,Ce)2CuO4 and (La,Sr)2CuO4 films. Applied Physics Letters, 1995, 67, 2557-2559.	3.3	79
9	MgB2thin films for superconducting electronics. Superconductor Science and Technology, 2004, 17, R1-R18.	3.5	74
10	Kondo effect in underdopedn-type superconductors. Physical Review B, 2003, 67, . Synthesis and properties of superconducting ambimath	3.2	65
11	xmlns:mml="http://www.w3.org/1998/Math/MathML"		

Μιςηιο Ναιτο

#	Article	IF	CITATIONS
19	Recent progress in thin-film growth of Fe-based superconductors: superior superconductivity achieved by thin films. Superconductor Science and Technology, 2018, 31, 093001.	3.5	44
20	Oxypnictide SmFeAs(O,F) superconductor: a candidate for high–field magnet applications. Scientific Reports, 2013, 3, 2139.	3.3	42
21	High-Tc and high-Jc SmFeAs(O,F) films on fluoride substrates grown by molecular beam epitaxy. Materials Research Society Symposia Proceedings, 2012, 1434, 45.	0.1	38
22	Synthesis of infinite-layer LaNiO2 films by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2009, 469, 936-939.	1.2	36
23	MBE growth of FeSe and Sr1â^'xKxFe2As2. Physica C: Superconductivity and Its Applications, 2010, 470, 1468-1472.	1.2	36
24	Galvanomagnetic Effects in the Charge-Density-Wave State of 2H-NbSe2 and 2H-TaSe2. Journal of the Physical Society of Japan, 1982, 51, 228-236.	1.6	34
25	Electron-Phonon Coupling Constant of BaPb1-xBixO3as Estimated from the McMillan Equation. Journal of the Physical Society of Japan, 1985, 54, 2682-2689.	1.6	34
26	Nonlinear Conductivity and Broad Band Noise of Monoclinic TaS3. Journal of the Physical Society of Japan, 1985, 54, 1912-1922.	1.6	34
27	A New Superconducting Cuprate Prepared by Low-Temperature Thin-Film Synthesis in a Ba-Cu-O System. Japanese Journal of Applied Physics, 1997, 36, L341-L344.	1.5	34
28	Multi-source MBE with high-precision rate control system as a synthesis method sui generis for multi-cation metal oxides. Journal of Crystal Growth, 2013, 378, 184-188.	1.5	32
29	Reassessment of the electronic state, magnetism, and superconductivity in high-Tc cuprates with the Nd2CuO4 structure. Physica C: Superconductivity and Its Applications, 2016, 523, 28-54.	1.2	30
30	Molecular Beam Epitaxy Growth of Superconducting Sr _{1-<i>x</i>} K _{<i>x</i>} Fe ₂ As ₂ and Ba _{1-<i>x</i>} K _{<i>x</i>} Fe ₂ As ₂ . Applied Physics Express, 2010, 3, 093101.	2.4	29
31	Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2013, 495, 134-140.	1.2	28
32	Superconductivity in bulk Tâ€2-(La,Sm)2CuO4 prepared via a molten alkaline hydroxide route. Physica C: Superconductivity and Its Applications, 2011, 471, 682-685.	1.2	26
33	MBE growth of Fe-based superconducting films. Physica C: Superconductivity and Its Applications, 2011, 471, 1167-1173.	1.2	26
34	Growth of iron nitride thin films by molecular beam epitaxy. Journal of Crystal Growth, 2015, 415, 36-40.	1.5	26
35	Reduction dependence of superconductivity in the end-member T′ cuprates. Physica C: Superconductivity and Its Applications, 2009, 469, 940-943.	1.2	22
36	Induced lattice strain in epitaxial Fe-based superconducting films on CaF2 substrates: A comparative study of the microstructures of SmFeAs(O,F), Ba(Fe,Co)2As2, and FeTe0.5Se0.5. Applied Physics Letters, 2014, 104, .	3.3	22

Μιςμιο Ναιτο

#	Article	IF	CITATIONS
37	Intrinsic problem of cuprate surface and interface: why good tunnel junctions are difficult to fabricate. Physica C: Superconductivity and Its Applications, 2000, 335, 201-206.	1.2	20
38	A study of the doping dependence of Tc in Ba1â^'xKxFe2As2 and Sr1â^'xKxFe2As2 films grown by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2011, 471, 1177-1180.	1.2	20
39	Nuclear Magnetic Resonance and Nuclear Quadrupole Resonance Study of181Ta in the Commensurate Charge Density Wave State of 1T-TaS2. Journal of the Physical Society of Japan, 1986, 55, 2410-2421.	1.6	19
40	New Superconducting Sr2CuO4-δ Thin Films Prepared by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2001, 40, L127-L130.	1.5	18
41	A new superconducting barium cuprate prepared by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2000, 338, 29-37.	1.2	16
42	Substrate effect on structure and superconductivity in SmFeAs(O,F) epitaxial films. Physica C: Superconductivity and Its Applications, 2012, 475, 10-13.	1.2	16
43	Comparison of reduction agents in the synthesis of infinite-layer LaNiO2 films. Physica C: Superconductivity and Its Applications, 2014, 506, 83-86.	1.2	16
44	Nuclear Quadrupole Resonance in the Charge Density Wave State of 1T-TaS2. Journal of the Physical Society of Japan, 1984, 53, 1610-1613.	1.6	15
45	New Superconducting PbSr2CuO5+δPrepared by a Novel Low-Temperature Synthetic Route Using Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1999, 38, L283-L285.	1.5	15
46	Superconducting T′-La2â^'xCexCuO4 films grown by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2001, 357-360, 333-336.	1.2	15
47	Phase control in La-214 epitaxial thin films. , 2002, 4811, 140.		14
48	The influence of the in-plane lattice constant on the superconducting transition temperature of FeSe0.7Te0.3 thin films. AIP Advances, 2017, 7, 065015.	1.3	13
49	Universal scaling behavior of the upper critical field in strained FeSe _{0.7} Te _{0.3} thin films. New Journal of Physics, 2018, 20, 093012.	2.9	13
50	As-Grown Superconducting SmFeAs(O,F) Thin Films by Molecular Beam Epitaxy. Applied Physics Express, 2012, 5, 053101.	2.4	12
51	Epitaxial effects in thin films of high- T c cuprates with the K 2 NiF 4 structure. Physica C: Superconductivity and Its Applications, 2018, 546, 84-114.	1.2	12
52	NMR Study of 181Ta in the Commensurate Charge-Density-Wave State of 1T-TaSe2 and 1T-TaS2 Single Crystals: A Microscopic Investigation of the Three-Dimensional Ordering of the Charge Density Waves. Journal of the Physical Society of Japan, 1984, 53, 1217-1220.	1.6	10
53	Oxygen nonstoichiometry of MBE-grown cuprate films to lose or give high-T c superconductivity. , 1998, , .		10
54	Carrier scattering mechanisms in 2H-TaSe2. Physica B: Physics of Condensed Matter & C: Atomic, Molecular and Plasma Physics, Optics, 1981, 105, 136-140.	0.9	9

Μιςηιο Ναιτο

#	Article	IF	CITATIONS
55	High-field magnetotransport in strained (La,Sr)2CuO4 films. Physica C: Superconductivity and Its Applications, 2002, 378-381, 195-198.	1.2	9
56	Kondo effect in the normal state of T′-Ln2â^'xCexCuO4 (Ln=La, Pr, Nd). Journal of Physics and Chemistry of Solids, 2002, 63, 1089-1092.	4.0	9
57	Tunnel junctions on as-grown MgB2 films. Physica C: Superconductivity and Its Applications, 2004, 408-410, 134-135.	1.2	9
58	RE dependence of superconductivity in parent T′-RE2CuO4. Physica C: Superconductivity and Its Applications, 2011, 471, 686-689.	1.2	9
59	Universal Superconducting Ground State in Nd _{1.85} Ce _{0.15} CuO ₄ and Nd ₂ CuO ₄ . Japanese Journal of Applied Physics, 2012, 51, 010106.	1.5	9
60	Epitaxial strain effect in perovskite RENiO3 films (RE= La–Eu) prepared by metal organic decomposition. Physica C: Superconductivity and Its Applications, 2014, 505, 24-31.	1.2	9
61	Nuclear Magnetic Resonance and Nuclear Quadrupole Resonance Study of181Ta in The Commensurate Charge Density Wave State of 1T-TaSe2. Journal of the Physical Society of Japan, 1985, 54, 3946-3955.	1.6	9
62	Low Microwave Surface Resistance in NdBa2Cu3O7-δFilms Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 2004, 43, L1502-L1505.	1.5	8
63	Simple Route to Grow High-Quality MgB2Thin Films by Pyrolysis of Decaborane (B10H14) in Mg Vapor. Applied Physics Express, 2011, 4, 073101.	2.4	8
64	Molecular Beam Epitaxy Growth of Superconducting Ba\$_{1-x}\$K\$_{x}\$Fe\$_{2}\$As\$_{2}\$ and SmFeAs(O,F) Films. Japanese Journal of Applied Physics, 2012, 51, 010103.	1.5	8
65	Augmented methods for growth and development of novel multi-cation oxides. Proceedings of SPIE, 2014, , .	0.8	8
66	Approaching the ultimate superconducting properties of (Ba,K)Fe2As2 by naturally formed low-angle grain boundary networks. NPG Asia Materials, 2021, 13, .	7.9	8
67	Molecular beam epitaxy growth of SmFeAs(O,F) films with Tc = 55 K using the new fluorine source F Journal of Applied Physics, 2017, 122, 015306.	eF3. 2.5	7
68	Realization of epitaxial thin films of the superconductor K-doped <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"> <mml:mrow> <mml:mi>Ba</mml:mi> <mml:msub> <mml:mi Physical Review Materials, 2021, 5, .</mml:mi </mml:msub></mml:mrow></mml:math 	> £e ≺/mml	:nai> <mml:n< td=""></mml:n<>
69	New superconducting lead cuprates prepared by molecular beam epitaxy. , 2000, , .		5
70	Vortex pinning in electron-doped cuprate superconductor La2–xCexCuO4. Physica Status Solidi (B): Basic Research, 2003, 236, 412-415.	1.5	5
71	Preparation of superconducting parent compounds Tâ€2-RE2CuO4 by molecular beam epitaxy. Physica C: Superconductivity and Its Applications, 2010, 470, S88-S89.	1.2	5
72	K-doped Ba122 epitaxial thin film on MgO substrate by buffer engineering. Superconductor Science and Technology, 2022, 35, 09LT01.	3.5	5

Μιςμιο Ναιτο

#	Article	IF	CITATIONS
73	Role of substrates in molecular beam epitaxy growth of superconducting T′-La2ⰒxCexCuO4 films. Physica C: Superconductivity and Its Applications, 2002, 372-376, 1082-1086.	1.2	4
74	Generic phase diagram of Nd2â^'Ce CuO4. Physica C: Superconductivity and Its Applications, 2010, 470, S101-S103.	1.2	4
75	Deteriorated superconductivity of MgB2 films due to Al diffusion from Al2O3 substrates: Thermodynamic perspective. Physica C: Superconductivity and Its Applications, 2013, 495, 84-87.	1.2	4
76	Crystal growth and metal-insulator transition in two-dimensional layered rare-earth palladates. Physical Review Materials, 2018, 2, .	2.4	4
77	Current Status of Thin-film Synthesis and Junction Fabrication of MgB ₂ and Future Prospects for Device Application. TEION KOGAKU (Journal of Cryogenics and Superconductivity) Tj ETQq1 1 0.78	4 30.4 rgBT	/@verlock 1(
78	A study of the compositional dependence of the quality of In-situ grown YBaCuO films in E-beam coevaporation. Physica C: Superconductivity and Its Applications, 1991, 185-189, 1977-1978.	1.2	3
79	Simple route to grow high-quality MgB2 thin films using decaborane as a boron source. Physica C: Superconductivity and Its Applications, 2011, 471, 1189-1192.	1.2	3
80	Molecular beam epitaxy of Nd2PdO4 thin films. AIP Advances, 2017, 7, 075006.	1.3	3
81	Layered Transition Metal Dichalcogenides. Physics and Chemistry of Materials With Low-dimensional Structures, 1992, , 35-112.	1.0	3
82	Molecular Beam Epitaxy Growth of Superconducting Ba1-xKxFe2As2and SmFeAs(O,F) Films. Japanese Journal of Applied Physics, 2012, 51, 010103.	1.5	3
83	Anisotropic Resistivity of In-Plane-Aligned La2-xSrxCuO4(100) Films on LaSrGaO4(100) Substrates. Japanese Journal of Applied Physics, 1997, 36, 2642-2645.	1.5	2
84	New superconducting PbSr2CuO5+δ prepared by a novel low-temperature synthetic route using molecular beam epitaxy. Physica B: Condensed Matter, 2000, 284-288, 1113-1114.	2.7	2
85	High-field magnetotransport in strained La2â^'xSrxCuO4 films. Physica C: Superconductivity and Its Applications, 2003, 388-389, 345-346.	1.2	2
86	Interface Microstructure of MgB2/Al–AlOx/MgB2Josephson Junctions Studied by Cross-Sectional Transmission Electron Microscopy. Japanese Journal of Applied Physics, 2007, 46, L271-L273.	1.5	2
87	Epitaxial Growth of Superconducting Eu2-xCexCuO4Thin Films. Japanese Journal of Applied Physics, 2008, 47, 6307-6309.	1.5	2
88	Superconducting tunnel junctions on MgB2 using MgO and CaF2 as a barrier. Physica C: Superconductivity and Its Applications, 2016, 530, 82-86.	1.2	2
89	Universal Superconducting Ground State in Nd _{1.85} Ce _{0.15} CuO ₄ and Nd ₂ CuO ₄ . Japanese Journal of Applied Physics, 2012, 51, 010106.	1.5	2
90	Molecular beam epitaxy growth of Sr1-xKxFe2As2 and Ba1-xKxFe2As2. Materials Research Society Symposia Proceedings, 2012, 1434, 17.	0.1	1

Μιςηιο Ναιτο

#	ARTICLE	IF	CITATIONS
91	Dimensional Crossover in Fe-based Superconductors. TEION KOGAKU (Journal of Cryogenics and) Tj ETQq1 1 0.78	4314 rgB1 0.1	ſ <u>{</u> Overlock
92	Superconducting phenomenology of cuprates: effect of pseudo-gap and other anomalies. Physica C: Superconductivity and Its Applications, 1999, 317-318, 345-352.	1.2	0
93	Three-dimensional superconductivity of the structurally two-dimensional superconductor La1.87Y0.13CuO4: study of an angle-dependent critical current density. Superconductor Science and Technology, 2005, 18, 944-947.	3.5	0
94	Three-dimensional superconductivity and vortex glass transition in. Physica B: Condensed Matter, 2006, 378-380, 447-448.	2.7	0
95	Superconducting Parent Compound Pr2CuO4 Achieved by Special Post-Reduction. Materials Research Society Symposia Proceedings, 2011, 1309, 9.	0.1	0
96	RE dependence of superconductivity in parent T'-RE2CuO4 – implication on the nature of superconductivity. Materials Research Society Symposia Proceedings, 2012, 1434, 10.	0.1	0
97	Superconductivity over 30 K of Nd2CuO4 Films on CaF2 Substrates. Journal of Superconductivity and Novel Magnetism, 2020, 33, 121-125.	1.8	0
98	New Superconducting Lead Cuprates Prepared by Molecular Beam Epitaxy. , 2000, , 933-938.		0
99	All MgB2 Josephson Junctions with Amorphous Boron Barriers. IEICE Transactions on Electronics, 2010, E93-C, 468-472.	0.6	0
100	La2-xSrxCuO4 Thin Films Grown by Reactive Coevaporation. , 1997, , 1005-1010.		0
101	A New Superconducting Cuprate Prepared by Low-Temperature Thin-Film Synthesis. , 1998, , 965-970.		0
102	Transport properties of grain boundary junctions fabricated from hole and electron doped high-Tc superconductors. , 1999, , 117-120.		0
103	Past 10 Years and Recent Progress in the Thin-film Growth of Fe-based Superconductors. TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan), 2017, 52, 422-432.	0.1	0
104	Epitaxial growth of superconducting oxides. , 2022, , 101-136.		0