Corey T Mcmillan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023579/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neurodegenerative disease concomitant proteinopathies are prevalent, age-related and APOE4-associated. Brain, 2018, 141, 2181-2193.	7.6	448
2	What's in a name: voxel-based morphometric analyses of MRI and naming difficulty in Alzheimer's disease, frontotemporal dementia and corticobasal degeneration. Brain, 2003, 127, 628-649.	7.6	318
3	Frontotemporal lobar degeneration: defining phenotypic diversity through personalized medicine. Acta Neuropathologica, 2015, 129, 469-491.	7.7	218
4	Distribution patterns of tau pathology in progressive supranuclear palsy. Acta Neuropathologica, 2020, 140, 99-119.	7.7	210
5	TDP-43 loss and ALS-risk SNPs drive mis-splicing and depletion of UNC13A. Nature, 2022, 603, 131-137.	27.8	188
6	Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study. Lancet Neurology, The, 2020, 19, 145-156.	10.2	175
7	¹⁸ Fâ€flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study. Annals of Neurology, 2017, 82, 622-634.	5.3	148
8	Deep clinical and neuropathological phenotyping of <scp>P</scp> ick disease. Annals of Neurology, 2016, 79, 272-287.	5.3	146
9	The Neural Basis for Categorization in Semantic Memory. Neurolmage, 2002, 17, 1549-1561.	4.2	143
10	Cognitive decline and reduced survival in <i>C9orf72</i> expansion frontotemporal degeneration and amyotrophic lateral sclerosis. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 163-169.	1.9	141
11	Differentiating primary progressive aphasias in a brief sample of connected speech. Neurology, 2013, 81, 329-336.	1.1	126
12	Non-fluent speech in frontotemporal lobar degeneration. Journal of Neurolinguistics, 2009, 22, 370-383.	1.1	119
13	Clinical marker for Alzheimer disease pathology in logopenic primary progressive aphasia. Neurology, 2017, 88, 2276-2284.	1.1	114
14	Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathologica, 2015, 129, 39-52.	7.7	111
15	Speech errors in progressive non-fluent aphasia. Brain and Language, 2010, 113, 13-20.	1.6	104
16	Sentence comprehension and voxel-based morphometry in progressive nonfluent aphasia, semantic dementia, and nonaphasic frontotemporal dementia. Journal of Neurolinguistics, 2008, 21, 418-432.	1.1	102
17	Comparison of Cerebrospinal Fluid Levels of Tau and Aβ 1-42 in Alzheimer Disease and Frontotemporal Degeneration Using 2 Analytical Platforms. Archives of Neurology, 2012, 69, 1018-25.	4.5	100
18	The neural basis for novel semantic categorization. NeuroImage, 2005, 24, 369-383.	4.2	88

#	Article	IF	CITATIONS
19	Cognitive and Pathological Influences of Tau Pathology in Lewy Body Disorders. Annals of Neurology, 2019, 85, 259-271.	5.3	88
20	Disentangling Heterogeneity in Alzheimer's Disease and Related Dementias Using Data-Driven Methods. Biological Psychiatry, 2020, 88, 70-82.	1.3	87
21	Autosomal dominant VCP hypomorph mutation impairs disaggregation of PHF-tau. Science, 2020, 370, .	12.6	85
22	Dissociable patterns of brain activity during comprehension of rapid and syntactically complex speech: Evidence from fMRI. Brain and Language, 2004, 91, 315-325.	1.6	82
23	White matter imaging helps dissociate tau from TDP-43 in frontotemporal lobar degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 949-955.	1.9	82
24	Multimodal evaluation demonstrates in vivo 18F-AV-1451 uptake in autopsy-confirmed corticobasal degeneration. Acta Neuropathologica, 2016, 132, 935-937.	7.7	81
25	Disruption of large-scale neural networks in non-fluent/agrammatic variant primary progressive aphasia associated with frontotemporal degeneration pathology. Brain and Language, 2013, 127, 106-120.	1.6	77
26	The organization of narrative discourse in Lewy body spectrum disorder. Brain and Language, 2011, 119, 30-41.	1.6	74
27	Phosphorylated Tau as a Candidate Biomarker for Amyotrophic Lateral Sclerosis. JAMA Neurology, 2014, 71, 442.	9.0	74
28	Sparse canonical correlation analysis relates network-level atrophy to multivariate cognitive measures in a neurodegenerative population. NeuroImage, 2014, 84, 698-711.	4.2	73
29	White matter hyperintensities are more highly associated with preclinicalÂAlzheimer's disease than imaging and cognitive markers ofÂneurodegeneration. Alzheimer's and Dementia: Diagnosis, Assessment and Disease Monitoring, 2016, 4, 18-27.	2.4	71
30	Focal retrograde amnesia and the episodic-semantic distinction. Cognitive, Affective and Behavioral Neuroscience, 2001, 1, 22-36.	2.0	69
31	CSF tau and β-amyloid predict cerebral synucleinopathy in autopsied Lewy body disorders. Neurology, 2018, 90, e1038-e1046.	1.1	68
32	The role of ventral medial prefrontal cortex in social decisions: Converging evidence from fMRI and frontotemporal lobar degeneration. Neuropsychologia, 2010, 48, 3505-3512.	1.6	67
33	<i>C9orf72</i> promoter hypermethylation is neuroprotective. Neurology, 2015, 84, 1622-1630.	1.1	66
34	Semi-automated quantification of C9orf72 expansion size reveals inverse correlation between hexanucleotide repeat number and disease duration in frontotemporal degeneration. Acta Neuropathologica, 2015, 130, 363-372.	7.7	65
35	Cascading influences on the production of speech: Evidence from articulation. Cognition, 2010, 117, 243-260.	2.2	63
36	Neocortical origin and progression of gray matter atrophy in nonamnestic Alzheimer's disease. Neurobiology of Aging, 2018, 63, 75-87.	3.1	61

#	Article	IF	CITATIONS
37	Neural basis for generalized quantifier comprehension. Neuropsychologia, 2005, 43, 1729-1737.	1.6	60
38	Tau PET imaging predicts cognition in atypical variants of Alzheimer's disease. Human Brain Mapping, 2018, 39, 691-708.	3.6	59
39	Apathy in Frontotemporal Degeneration: Neuroanatomical Evidence of Impaired Goal-directed Behavior. Frontiers in Human Neuroscience, 2015, 9, 611.	2.0	57
40	Asymmetry of post-mortem neuropathology in behavioural-variant frontotemporal dementia. Brain, 2018, 141, 288-301.	7.6	56
41	A 2-Step Cerebrospinal Algorithm for the Selection of Frontotemporal Lobar Degeneration Subtypes. JAMA Neurology, 2018, 75, 738.	9.0	54
42	International Multicenter Analysis of Brain Structure Across Clinical Stages of Parkinson's Disease. Movement Disorders, 2021, 36, 2583-2594.	3.9	54
43	Calculation impairment in neurodegenerative diseases. Journal of the Neurological Sciences, 2003, 208, 31-38.	0.6	52
44	ALS-Plus syndrome: Non-pyramidal features in a large ALS cohort. Journal of the Neurological Sciences, 2014, 345, 118-124.	0.6	51
45	Deficits in sentence expression in amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2015, 16, 31-39.	1.7	51
46	Ante mortem cerebrospinal fluid tau levels correlate with postmortem tau pathology in frontotemporal lobar degeneration. Annals of Neurology, 2017, 82, 247-258.	5.3	51
47	Articulatory evidence for feedback and competition in speech production. Language and Cognitive Processes, 2009, 24, 44-66.	2.2	48
48	The power of neuroimaging biomarkers for screening frontotemporal dementia. Human Brain Mapping, 2014, 35, 4827-4840.	3.6	48
49	¹⁸ F-Flortaucipir PET/MRI Correlations in Nonamnestic and Amnestic Variants of Alzheimer Disease. Journal of Nuclear Medicine, 2018, 59, 299-306.	5.0	48
50	Impairments of speech fluency in Lewy body spectrum disorder. Brain and Language, 2012, 120, 290-302.	1.6	47
51	Comparative semantic profiles in semantic dementia and Alzheimer's disease. Brain, 2013, 136, 2497-2509.	7.6	47
52	Cognitive decline associated with pathological burden in primary ageâ€related tauopathy. Alzheimer's and Dementia, 2017, 13, 1048-1053.	0.8	47
53	Grammatical comprehension deficits in non-fluent/agrammatic primary progressive aphasia. Journal of Neurology, Neurosurgery and Psychiatry, 2014, 85, 249-256.	1.9	46
54	Genetic and neuroanatomic associations in sporadic frontotemporal lobar degeneration. Neurobiology of Aging, 2014, 35, 1473-1482.	3.1	43

#	Article	IF	CITATIONS
55	Semi-Automated Digital Image Analysis of Pick's Disease and TDP-43 Proteinopathy. Journal of Histochemistry and Cytochemistry, 2016, 64, 54-66.	2.5	43
56	Longitudinal decline in speech production in Parkinson's disease spectrum disorders. Brain and Language, 2017, 171, 42-51.	1.6	43
57	Action verb comprehension in amyotrophic lateral sclerosis and Parkinson's disease. Journal of Neurology, 2014, 261, 1073-1079.	3.6	42
58	Novel <scp>CSF</scp> biomarkers in genetic frontotemporal dementia identified by proteomics. Annals of Clinical and Translational Neurology, 2019, 6, 698-707.	3.7	42
59	Narrative discourse deficits in amyotrophic lateral sclerosis. Neurology, 2014, 83, 520-528.	1.1	40
60	Cognitive reserve in frontotemporal degeneration. Neurology, 2016, 87, 1813-1819.	1.1	40
61	Divergent patterns of TDPâ€43 and tau pathologies in primary progressive aphasia. Annals of Neurology, 2019, 85, 630-643.	5.3	40
62	Quantifier comprehension in corticobasal degeneration. Brain and Cognition, 2006, 62, 250-260.	1.8	39
63	fMRI evidence for strategic decision-making during resolution of pronoun reference. Neuropsychologia, 2012, 50, 674-687.	1.6	39
64	Deficits in concept formation in amyotrophic lateral sclerosis Neuropsychology, 2012, 26, 422-429.	1.3	38
65	Neural Correlates of Verbal Episodic Memory and Lexical Retrieval in Logopenic Variant Primary Progressive Aphasia. Frontiers in Neuroscience, 2017, 11, 330.	2.8	38
66	Preventing amyotrophic lateral sclerosis: insights from pre-symptomatic neurodegenerative diseases. Brain, 2022, 145, 27-44.	7.6	38
67	Preserved Musical Semantic Memory in Semantic Dementia. Archives of Neurology, 2011, 68, 248-50.	4.5	37
68	Longitudinal progression of grey matter atrophy in non-amnestic Alzheimer's disease. Brain, 2019, 142, 1701-1722.	7.6	37
69	Presence of cerebral amyloid modulates phenotype and pattern of neurodegeneration in early Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 2016, 87, 1112-1122.	1.9	35
70	Early Selective Vulnerability of the CA2 Hippocampal Subfield in Primary Age-Related Tauopathy. Journal of Neuropathology and Experimental Neurology, 2021, 80, 102-111.	1.7	35
71	A longitudinal study of speech production in primary progressive aphasia and behavioral variant frontotemporal dementia. Brain and Language, 2019, 194, 46-57.	1.6	34
72	White Matter Disease Contributes to Apathy and Disinhibition in Behavioral Variant Frontotemporal Dementia. Cognitive and Behavioral Neurology, 2014, 27, 206-214.	0.9	33

#	Article	IF	CITATIONS
73	Confrontation Naming and Morphometric Analyses of Structural MRI in Frontotemporal Dementia. Dementia and Geriatric Cognitive Disorders, 2004, 17, 320-323.	1.5	32
74	Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathologica Communications, 2021, 9, 134.	5.2	32
75	UNC13A polymorphism contributes to frontotemporal disease in sporadic amyotrophic lateral sclerosis. Neurobiology of Aging, 2019, 73, 190-199.	3.1	31
76	Category-specific semantic memory: Converging evidence from bold fMRI and Alzheimer's disease. NeuroImage, 2013, 68, 263-274.	4.2	30
77	Occupational attainment influences survival in autopsy-confirmed frontotemporal degeneration. Neurology, 2015, 84, 2070-2075.	1.1	30
78	White Matter Disease Correlates with Lexical Retrieval Deficits in Primary Progressive Aphasia. Frontiers in Neurology, 2013, 4, 212.	2.4	29
79	Relating brain anatomy and cognitive ability using a multivariate multimodal framework. NeuroImage, 2014, 99, 477-486.	4.2	29
80	Converging Evidence for the Processing Costs Associated with Ambiguous Quantifier Comprehension. Frontiers in Psychology, 2013, 4, 153.	2.1	28
81	Brain network efficiency is influenced by the pathologic source of corticobasal syndrome. Neurology, 2017, 89, 1373-1381.	1.1	27
82	ATN incorporating cerebrospinal fluid neurofilament light chain detects frontotemporal lobar degeneration. Alzheimer's and Dementia, 2021, 17, 822-830.	0.8	27
83	Self-appraisal in behavioural variant frontotemporal degeneration. Journal of Neurology, Neurosurgery and Psychiatry, 2013, 84, 148-153.	1.9	26
84	Myelin oligodendrocyte basic protein and prognosis in behavioral-variant frontotemporal dementia. Neurology, 2014, 83, 502-509.	1.1	26
85	Getting on the same page: The neural basis for social coordination deficits in behavioral variant frontotemporal degeneration. Neuropsychologia, 2015, 69, 56-66.	1.6	26
86	Multimodal imaging evidence of pathology-mediated disease distribution in corticobasal syndrome. Neurology, 2016, 87, 1227-1234.	1.1	25
87	Difficulty processing temporary syntactic ambiguities in Lewy body spectrum disorder. Brain and Language, 2012, 120, 52-60.	1.6	23
88	Arterial spin labeling perfusion predicts longitudinal decline in semantic variant primary progressive aphasia. Journal of Neurology, 2016, 263, 1927-1938.	3.6	23
89	Some is not enough: Quantifier comprehension in corticobasal syndrome and behavioral variant frontotemporal dementia. Neuropsychologia, 2011, 49, 3532-3541.	1.6	22
90	Impaired Cognitive Flexibility in Amyotrophic Lateral Sclerosis. Cognitive and Behavioral Neurology, 2015, 28, 17-26.	0.9	22

#	Article	IF	CITATIONS
91	Frontotemporal lobar degeneration proteinopathies have disparate microscopic patterns of white and grey matter pathology. Acta Neuropathologica Communications, 2021, 9, 30.	5.2	22
92	Can MRI screen for CSF biomarkers in neurodegenerative disease?. Neurology, 2013, 80, 132-138.	1.1	21
93	Dissociation of quantifiers and object nouns in speech in focal neurodegenerative disease. Neuropsychologia, 2016, 89, 141-152.	1.6	21
94	Longitudinal structural gray matter and white matter MRI changes in presymptomatic progranulin mutation carriers. NeuroImage: Clinical, 2018, 19, 497-506.	2.7	21
95	Sparse Unbiased Analysis of Anatomical Variance in Longitudinal Imaging. Lecture Notes in Computer Science, 2010, 13, 324-331.	1.3	21
96	The neural basis for establishing a focal point in pure coordination games. Social Cognitive and Affective Neuroscience, 2012, 7, 881-887.	3.0	20
97	Diffusion Tensor MRI to Distinguish Progressive Supranuclear Palsy from α-Synucleinopathies. Radiology, 2019, 293, 646-653.	7.3	20
98	Tau pathology associates with in vivo cortical thinning in Lewy body disorders. Annals of Clinical and Translational Neurology, 2020, 7, 2342-2355.	3.7	20
99	Estimating frontal and parietal involvement in cognitive estimation: a study of focal neurodegenerative diseases. Frontiers in Human Neuroscience, 2015, 9, 317.	2.0	19
100	Clinical value of cerebrospinal fluid neurofilament light chain in semantic dementia. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 997-1004.	1.9	19
101	Automated analysis of natural speech in amyotrophic lateral sclerosis spectrum disorders. Neurology, 2020, 95, e1629-e1639.	1.1	19
102	Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathologica, 2022, 143, 33-53.	7.7	19
103	Sentence processing in Lewy body spectrum disorder: The role of working memory. Brain and Cognition, 2012, 78, 85-93.	1.8	18
104	Occupational attainment influences longitudinal decline in behavioral variant frontotemporal degeneration. Brain Imaging and Behavior, 2019, 13, 293-301.	2.1	18
105	Rates of longitudinal change in ¹⁸ Fâ€flortaucipir PET vary by brain region, cognitive impairment, and age in atypical Alzheimer's disease. Alzheimer's and Dementia, 2022, 18, 1235-1247.	0.8	18
106	Impaired Information Integration Contributes to Communication Difficulty in Corticobasal Syndrome. Cognitive and Behavioral Neurology, 2010, 23, 1-7.	0.9	17
107	Elevated YKL-40 and low sAPPβ:YKL-40 ratio in antemortem cerebrospinal fluid of patients with pathologically confirmed FTLD. Journal of Neurology, Neurosurgery and Psychiatry, 2019, 90, 180-186.	1.9	17
108	Ex vivo MRI and histopathology detect novel iron-rich cortical inflammation in frontotemporal lobar degeneration with tau versus TDP-43 pathology. NeuroImage: Clinical, 2022, 33, 102913.	2.7	17

#	Article	IF	CITATIONS
109	Degeneration of the locus coeruleus is a common feature of tauopathies and distinct from TDP-43 proteinopathies in the frontotemporal lobar degeneration spectrum. Acta Neuropathologica, 2020, 140, 675-693.	7.7	15
110	Eigenanatomy Improves Detection Power for Longitudinal Cortical Change. Lecture Notes in Computer Science, 2012, 15, 206-213.	1.3	15
111	Alzheimer's genetic risk is reduced in primary ageâ€related tauopathy: a potential model of resistance?. Annals of Clinical and Translational Neurology, 2018, 5, 927-934.	3.7	14
112	Multimodal inÂvivo and postmortem assessments of tau in Lewy body disorders. Neurobiology of Aging, 2020, 96, 137-147.	3.1	14
113	Counting or chunking? Mathematical and heuristic abilities in patients with corticobasal syndrome and posterior cortical atrophy. Neuropsychologia, 2014, 64, 176-183.	1.6	13
114	Empiric Methods to Account for Pre-analytical Variability in Digital Histopathology in Frontotemporal Lobar Degeneration. Frontiers in Neuroscience, 2019, 13, 682.	2.8	13
115	Machine learning suggests polygenic risk for cognitive dysfunction in amyotrophic lateral sclerosis. EMBO Molecular Medicine, 2021, 13, e12595.	6.9	13
116	Defining cognitive impairment in amyotrophic lateral sclerosis: an evaluation of empirical approaches. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2022, 23, 517-526.	1.7	13
117	Category-specific effects in semantic memory: Category–task interactions suggested by fMRI. NeuroImage, 2006, 30, 1003-1009.	4.2	12
118	Beyond words: Pragmatic inference in behavioral variant of frontotemporal degeneration. Neuropsychologia, 2015, 75, 556-564.	1.6	12
119	Signature laminar distributions of pathology in frontotemporal lobar degeneration. Acta Neuropathologica, 2022, 143, 363-382.	7.7	12
120	Perfusion alterations converge with patterns of pathological spread in transactive response DNA-binding protein 43 proteinopathies. Neurobiology of Aging, 2018, 68, 85-92.	3.1	11
121	Genetic predictors of survival in behavioral variant frontotemporal degeneration. Neurology, 2019, 93, e1707-e1714.	1.1	11
122	The relative contributions of frontal and parietal cortex for generalized quantifier comprehension. Frontiers in Human Neuroscience, 2014, 8, 610.	2.0	10
123	Amyloid "accumulators― Neurology, 2018, 90, 759-760.	1.1	9
124	MRI biomarkers — a precision medicine tool in neurology?. Nature Reviews Neurology, 2016, 12, 323-324.	10.1	8
125	CSF sTREM2 is elevated in a subset in GRN-related frontotemporal dementia. Neurobiology of Aging, 2021, 103, 158.e1-158.e5.	3.1	8
126	Genetic and environmental factors associated with delirium severity in older adults with dementia. International Journal of Geriatric Psychiatry, 2017, 32, 574-581.	2.7	7

#	Article	IF	CITATIONS
127	Narrative Organization Deficit in Lewy Body Disorders Is Related to Alzheimer Pathology. Frontiers in Neuroscience, 2017, 11, 53.	2.8	7
128	Multimarker synaptic protein cerebrospinal fluid panels reflect TDP-43 pathology and cognitive performance in a pathological cohort of frontotemporal lobar degeneration. Molecular Neurodegeneration, 2022, 17, 29.	10.8	7
129	lf so many are "few,―how few are "many�. Frontiers in Psychology, 2015, 6, 441.	2.1	6
130	Relating Structural and Functional Connectivity to Performance in a Communication Task. Lecture Notes in Computer Science, 2010, 13, 282-289.	1.3	6
131	Magnitude and parity as complementary attributes of quantifier statements. Neuropsychologia, 2009, 47, 2684-2685.	1.6	5
132	Impairment of script comprehension in Lewy body spectrum disorders. Brain and Language, 2013, 125, 330-343.	1.6	5
133	How the brain learns how few are "manyâ€ŧ An fMRI study of the flexibility of quantifier semantics. NeuroImage, 2016, 125, 45-52.	4.2	5
134	Clinical Correlates of Alzheimer's Disease Cerebrospinal Fluid Analytes in Primary Progressive Aphasia. Frontiers in Neurology, 2019, 10, 485.	2.4	5
135	The Neural Basis of Metaphor Comprehension: Evidence from Left Hemisphere Degeneration. Neurobiology of Language (Cambridge, Mass), 2020, 1, 474-491.	3.1	5
136	Social and leisure activity are associated with attenuated cortical loss in behavioral variant frontotemporal degeneration. NeuroImage: Clinical, 2021, 30, 102629.	2.7	5
137	Neurofilament Light Chain Related to Longitudinal Decline in Frontotemporal Lobar Degeneration. Neurology: Clinical Practice, 2021, 11, 105-116.	1.6	5
138	Processing ambiguity in a linguistic context: decision-making difficulties in non-aphasic patients with behavioral variant frontotemporal degeneration. Frontiers in Human Neuroscience, 2015, 9, 583.	2.0	4
139	So Many Are "Few,―but so Few Are Also "Few―– Reduced Semantic Flexibility in bvFTD Patients. Frontiers in Psychology, 2020, 11, 582.	2.1	4
140	Divergent Histopathological Networks of Frontotemporal Degeneration Proteinopathy Subytpes. Journal of Neuroscience, 2022, 42, 3868-3877.	3.6	4
141	Single breath counting is an effective screening tool for forced vital capacity in ALS. Amyotrophic Lateral Sclerosis and Frontotemporal Degeneration, 2021, 22, 5-8.	1.7	3
142	Category learning in Alzheimer's disease and normal cognitive aging depends on initial experience of feature variability. Neuropsychologia, 2017, 98, 98-110.	1.6	2
143	Common genetic variation is associated with longitudinal decline and network features in behavioral variant frontotemporal degeneration. Neurobiology of Aging, 2021, 108, 16-23.	3.1	2
144	Lateralized <i>ante mortem</i> and <i>post mortem</i> pathology in a case of Lewy body disease with corticobasal syndrome. Alzheimer's and Dementia: Translational Research and Clinical Interventions, 2022, 8, e12294.	3.7	2

#	Article	IF	CITATIONS
145	Decision-Making Deficits Associated with Amyloidosis in Lewy Body Disorders. Frontiers in Human Neuroscience, 2017, 10, 693.	2.0	1
146	Calsynteninâ€1 is a cerebrospinal fluid marker of frontotemporal dementiaâ€related synapse degeneration. Alzheimer's and Dementia, 2021, 17, .	0.8	1
147	Reply to: A note on some neuroimaging study of natural language quantifier comprehension. Neuropsychologia, 2007, 45, 2161-2161.	1.6	Ο
148	Author response: Cognitive reserve in frontotemporal degeneration: Neuroanatomic and neuropsychological evidence. Neurology, 2017, 88, 1590.3-1591.	1.1	0
149	[P4–238]: AMNESTIC AND NONâ€AMNESTIC PHENOTYPES OF ALZHEIMER'S DISEASE: AN MRIâ€BASED PHASIN ANALYSIS. Alzheimer's and Dementia, 2017, 13, P1365.	IG.8	0
150	Flortaucipir imaging of <i>MAPT</i> . Neurology, 2018, 90, 495-496.	1.1	0
151	ICâ€06â€03: DISTINCT LONGITUDINAL CORTICAL ATROPHY IN NONâ€AMNESTIC COMPARED TO AMNESTIC ALZHEIMER'S DISEASE SUGGESTS DIFFERENT PATTERNS OF SPREADING PATHOLOGY. Alzheimer's and Dementia, 2018, 14, P12.	0.8	0
152	P3â€565: RISK FACTORS FOR CLINICAL AD IN U.S. LATINO POPULATIONS: AN ANALYSIS OF THE NACC DATABASE Alzheimer's and Dementia, 2018, 14, P1340.	0.8	0
153	O5â€04â€04: CANDIDATE EPIGENETIC MODIFIERS OF TAU PATHOLOGICAL BURDEN IN PRIMARY AGEâ€RELATED TAUOPATHY. Alzheimer's and Dementia, 2018, 14, P1652.	0.8	0
154	P3â€406: DISTINCT LONGITUDINAL CORTICAL ATROPHY IN NONâ€AMNESTIC COMPARED TO AMNESTIC ALZHEIMER'S DISEASE SUGGESTS DIFFERENT PATTERNS OF SPREADING PATHOLOGY. Alzheimer's and Dementia, 2018, 14, P1259.	0.8	0
155	Repeat expansions contribute to TDP-43 pathologic heterogeneity in ALS. Neurology, 2019, 93, 823-824.	1.1	0
156	ICâ€Pâ€043: CONTRIBUTION OF TAU, TDPâ€43, βâ€AMYLOID AND αâ€SYNUCLEIN TO MEDIAL TEMPORAL LOBE Alzheimer's and Dementia, 2019, 15, P46.	TATROPH'	Y. ₀
157	Reduced longitudinal change in ¹⁸ Fâ€flortaucipir PET is associated with clinical phenotype in atypical Alzheimer's disease. Alzheimer's and Dementia, 2021, 17, .	0.8	0

158Regional distribution of tau pathology in subfields of hippocampus among phenotypic variants of AD
and FTLD-tau.. Alzheimer's and Dementia, 2021, 17 Suppl 3, e052392.0.80