
## **Chris Berndt**

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6023345/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                  | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Multifunctional cold spray coatings for biological and biomedical applications: A review. Progress in Surface Science, 2022, 97, 100654.                                                                                                 | 8.3 | 27        |
| 2  | Antibacterial Longevity of a Novel Gallium Liquid Metal/Hydroxyapatite Composite Coating Fabricated by Plasma Spray. ACS Applied Materials & Interfaces, 2022, 14, 18974-18988.                                                          | 8.0 | 24        |
| 3  | Nano- and micro-mechanical properties and corrosion performance of a HVOF sprayed AlCoCrFeNi<br>high-entropy alloy coating. Journal of Alloys and Compounds, 2022, 912, 165000.                                                          | 5.5 | 19        |
| 4  | Tribological and corrosion performance of an atmospheric plasma sprayed AlCoCr0.5Ni high-entropy alloy coating. Wear, 2022, 506-507, 204443.                                                                                             | 3.1 | 12        |
| 5  | Multiscale mechanical performance and corrosion behaviour of plasma sprayed AlCoCrFeNi<br>high-entropy alloy coatings. Journal of Alloys and Compounds, 2021, 854, 157140.                                                               | 5.5 | 107       |
| 6  | Carbide dissolution in WC-17Co thermal spray coatings: Part 1-project concept and as-sprayed coatings. Journal of Alloys and Compounds, 2021, 856, 157464.                                                                               | 5.5 | 21        |
| 7  | Numerical modelling of particle impact and residual stresses in cold sprayed coatings: A review.<br>Surface and Coatings Technology, 2021, 409, 126835.                                                                                  | 4.8 | 63        |
| 8  | Baghdadite coating formed by hybrid water-stabilized plasma spray for bioceramic applications:<br>Mechanical and biological evaluations. Materials Science and Engineering C, 2021, 122, 111873.                                         | 7.3 | 11        |
| 9  | Thermally induced metallurgical transformations in WC-17Co thermal spray coatings as a function of carbide dissolution: Part 2 - Heat-treated coatings. International Journal of Refractory Metals and Hard Materials, 2021, 96, 105486. | 3.8 | 14        |
| 10 | Sliding Wear of Conventional and Suspension Sprayed Nanocomposite WC-Co Coatings: An Invited<br>Review. Journal of Thermal Spray Technology, 2021, 30, 800-861.                                                                          | 3.1 | 36        |
| 11 | Evaluating the influence of microstructural attributes: Fraction, composition, size and spatial distribution of phases on the oxidation behaviour of high-entropy alloys. Corrosion Science, 2021, 184, 109381.                          | 6.6 | 27        |
| 12 | Boride-based ultra-high temperature ceramic coatings deposited via controlled atmosphere plasma spray. Surface and Coatings Technology, 2021, 416, 127128.                                                                               | 4.8 | 7         |
| 13 | Corrosion and mechanical performance of HVOF WC-based coatings with alloyed nickel binder for use in marine hydraulic applications. Surface and Coatings Technology, 2021, 418, 127239.                                                  | 4.8 | 23        |
| 14 | Strengthening mechanisms in CrMoNbTiW refractory high entropy alloy. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 819, 141503.                                           | 5.6 | 34        |
| 15 | Mechanical performance and residual stress of WC-Co coatings manufactured by Kinetic<br>Metallizationâ"¢. Surface and Coatings Technology, 2021, 421, 127359.                                                                            | 4.8 | 12        |
| 16 | Development of high entropy alloys in Australia: a review. Australian Journal of Mechanical<br>Engineering, 2021, 19, 692-698.                                                                                                           | 2.1 | 1         |
| 17 | Influence of Cold Spray Parameters on Bonding Mechanisms: A Review. Metals, 2021, 11, 2016.                                                                                                                                              | 2.3 | 31        |
| 18 | Micro- to nano-scale chemical and mechanical mapping of antimicrobial-resistant fungal biofilms.<br>Nanoscale, 2020, 12, 19888-19904.                                                                                                    | 5.6 | 12        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Surface Engineering: Applications for Advanced Manufacturing. Jom, 2020, 72, 4574-4575.                                                                                                                           | 1.9  | 1         |
| 20 | Optimization of modulation-assisted drilling of Ti-6Al-4V aerospace alloy via response surface method.<br>Materials and Manufacturing Processes, 2020, 35, 1313-1329.                                             | 4.7  | 12        |
| 21 | Thermal Spray High-Entropy Alloy Coatings: A Review. Journal of Thermal Spray Technology, 2020, 29,<br>857-893.                                                                                                   | 3.1  | 162       |
| 22 | Mechanical Properties of Strontium–Hardystonite–Gahnite Coating Formed by Atmospheric Plasma<br>Spray. Coatings, 2019, 9, 759.                                                                                    | 2.6  | 9         |
| 23 | 2D layered organic–inorganic heterostructures for clean energy applications. Journal of Materials<br>Chemistry A, 2018, 6, 3824-3849.                                                                             | 10.3 | 51        |
| 24 | Application of High-Density Electropulsing to Improve the Performance of Metallic Materials:<br>Mechanisms, Microstructure and Properties. Materials, 2018, 11, 185.                                              | 2.9  | 64        |
| 25 | Influence of charged defects on the interfacial bonding strength of tantalum- and silver-doped nanograined TiO <sub>2</sub> . Physical Chemistry Chemical Physics, 2017, 19, 11881-11891.                         | 2.8  | 10        |
| 26 | Structural and mechanical properties of magnetron-sputtered Al–Au thin films. Applied Physics A:<br>Materials Science and Processing, 2017, 123, 1.                                                               | 2.3  | 3         |
| 27 | Tantalum- and Silver-Doped Titanium Dioxide Nanosheets Film: Influence on Interfacial Bonding<br>Structure and Hardness of the Surface System. Industrial & Engineering Chemistry Research, 2017,<br>56, 434-439. | 3.7  | 13        |
| 28 | The 2016 Thermal Spray Roadmap. Journal of Thermal Spray Technology, 2016, 25, 1376-1440.                                                                                                                         | 3.1  | 243       |
| 29 | Development of Processing Windows for HVOF Carbide-Based Coatings. Journal of Thermal Spray Technology, 2016, 25, 28-35.                                                                                          | 3.1  | 27        |
| 30 | Nanolaminated composite materials: structure, interface role and applications. RSC Advances, 2016, 6, 109361-109385.                                                                                              | 3.6  | 50        |
| 31 | Manufacturing of nickel based cermet coatings by the HVOF process. Surface Engineering, 2016, 32, 713-724.                                                                                                        | 2.2  | 20        |
| 32 | New Approaches to the Study of Spinel Ferrite Nanoparticles for Biomedical Applications. , 2016, ,<br>1417-1441.                                                                                                  |      | 2         |
| 33 | Fabrication and Characterization of Nanoporous Niobia, and Nanotubular Tantala, Titania and Zirconia via Anodization. Journal of Functional Biomaterials, 2015, 6, 153-170.                                       | 4.4  | 40        |
| 34 | Nanocomposite coatings: thermal spray processing, microstructure and performance. International<br>Materials Reviews, 2015, 60, 195-244.                                                                          | 19.3 | 55        |
| 35 | Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi.<br>Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2015, 46,<br>791-800.   | 2.2  | 149       |
| 36 | Development of Surface Nano-Crystallization in Alloys by Surface Mechanical Attrition Treatment<br>(SMAT). Critical Reviews in Solid State and Materials Sciences, 2015, 40, 164-181.                             | 12.3 | 85        |

| #  | Article                                                                                                                                                                                                                  | IF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Thermal spray forming of titanium and its alloys. , 2015, , 425-446.                                                                                                                                                     |      | 10        |
| 38 | Modular implementation of artificial neural network in predicting in-flight particle characteristics<br>of an atmospheric plasma spray process. Engineering Applications of Artificial Intelligence, 2015, 45,<br>57-70. | 8.1  | 18        |
| 39 | Determination of the Mechanical Properties of Plasma-Sprayed Hydroxyapatite Coatings Using the<br>Knoop Indentation Technique. Journal of Thermal Spray Technology, 2015, 24, 865-877.                                   | 3.1  | 18        |
| 40 | Cell response and bioactivity of titania–zirconia–zirconium titanate nanotubes with different<br>nanoscale topographies fabricated in a non-aqueous electrolyte. Biomaterials Science, 2015, 3, 636-644.                 | 5.4  | 14        |
| 41 | New Approaches to the Study of Spinel Ferrite Nanoparticles for Biomedical Applications. , 2015, , 1-21.                                                                                                                 |      | 2         |
| 42 | The influence of titania–zirconia–zirconium titanate nanotube characteristics on osteoblast cell<br>adhesion. Acta Biomaterialia, 2015, 12, 281-289.                                                                     | 8.3  | 56        |
| 43 | Investigating the anisotropic mechanical properties of plasma sprayed yttria-stabilised zirconia coatings. Surface and Coatings Technology, 2014, 259, 551-559.                                                          | 4.8  | 19        |
| 44 | Deformation and Energy Absorption of Composite Sandwich Beams. Key Engineering Materials, 2014,<br>626, 468-473.                                                                                                         | 0.4  | 2         |
| 45 | A Review of Hydroxyapatite Coatings Manufactured by Thermal Spray. Springer Series in Biomaterials<br>Science and Engineering, 2014, , 267-329.                                                                          | 1.0  | 37        |
| 46 | Behavior of <scp>CFRC</scp> / <scp>A</scp> l Foam Composite Sandwich Beams under Threeâ€₽oint<br>Bending. Advanced Engineering Materials, 2014, 16, 9-14.                                                                | 3.5  | 7         |
| 47 | Analysis of EMAA Splats on Glass and Mild Steel Substrates. Journal of Thermal Spray Technology, 2014, 23, 317-324.                                                                                                      | 3.1  | 5         |
| 48 | A review on hybrid nanolaminate materials synthesized by deposition techniques for energy storage<br>applications. Journal of Materials Chemistry A, 2014, 2, 3695-3708.                                                 | 10.3 | 96        |
| 49 | Fabrication and characterization of<br>TiO <sub>2</sub> –ZrO <sub>2</sub> –ZrTiO <sub>4</sub> nanotubes on TiZr alloy manufactured via<br>anodization. Journal of Materials Chemistry B, 2014, 2, 71-83.                 | 5.8  | 33        |
| 50 | Investigation of bacterial attachment on hydroxyapatite-coated titanium and tantalum. International<br>Journal of Surface Science and Engineering, 2014, 8, 255.                                                         | 0.4  | 15        |
| 51 | Biocompatibility of transition metal-substituted cobalt ferrite nanoparticles. Journal of Nanoparticle<br>Research, 2014, 16, 1.                                                                                         | 1.9  | 48        |
| 52 | A review of testing methods for thermal spray coatings. International Materials Reviews, 2014, 59, 179-223.                                                                                                              | 19.3 | 138       |
| 53 | Topographical and Microstructural Property Evolution of Air Plasmaâ€ <del>S</del> prayed Zirconia Thermal<br>Barrier Coatings. Journal of the American Ceramic Society, 2014, 97, 1218-1225.                             | 3.8  | 4         |
| 54 | Evaluation of the mechanical properties of plasma sprayed hydroxyapatite coatings. Applied Surface<br>Science, 2014, 303, 155-162.                                                                                       | 6.1  | 42        |

| #  | Article                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | An Extreme Learning Machine Algorithm to Predict the In-flight Particle Characteristics of an<br>Atmospheric Plasma Spray Process. Plasma Chemistry and Plasma Processing, 2013, 33, 993-1023.                              | 2.4 | 9         |
| 56 | Thermal Spray Maps: Material Genomics of Processing Technologies. Journal of Thermal Spray<br>Technology, 2013, 22, 1170-1183.                                                                                              | 3.1 | 32        |
| 57 | Transition metal-substituted cobalt ferrite nanoparticles for biomedical applications. Acta<br>Biomaterialia, 2013, 9, 5830-5837.                                                                                           | 8.3 | 284       |
| 58 | Quantification and Taxonomy of Pores in Thermal Spray Coatings by Image Analysis and Stereology<br>Approach. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science,<br>2013, 44, 4844-4858. | 2.2 | 14        |
| 59 | Review on the Oxidation of Metallic Thermal Sprayed Coatings: A Case Study with Reference to<br>Rare-Earth Permanent Magnetic Coatings. Journal of Thermal Spray Technology, 2013, 22, 1069-1091.                           | 3.1 | 27        |
| 60 | Void Formation and Spatial Distribution in Plasma Sprayed Nd-Fe-B Coatings. Journal of Thermal Spray Technology, 2013, 22, 337-344.                                                                                         | 3.1 | 4         |
| 61 | Influence of the different organic chelating agents on the topography, physical properties and phase of SPPS-deposited spinel ferrite splats. Applied Surface Science, 2013, 284, 171-178.                                  | 6.1 | 10        |
| 62 | Effects of standoff distance on porosity, phase distribution and mechanical properties of plasma sprayed Nd–Fe–B coatings. Surface and Coatings Technology, 2013, 216, 127-138.                                             | 4.8 | 18        |
| 63 | Effect of the chelating agent contents on the topography, composition and phase of SPPS-deposited cobalt ferrite splats. Surface and Coatings Technology, 2013, 232, 247-253.                                               | 4.8 | 11        |
| 64 | Cell response of anodized nanotubes on titanium and titanium alloys. Journal of Biomedical Materials<br>Research - Part A, 2013, 101A, 2726-2739.                                                                           | 4.0 | 159       |
| 65 | Microstructure, composition and hardness of laser-assisted hydroxyapatite and Ti-6Al-4V composite coatings. Surface and Coatings Technology, 2013, 232, 482-488.                                                            | 4.8 | 29        |
| 66 | Effect of Power and Stand-Off Distance on Plasma Sprayed Hydroxyapatite Coatings. Materials and Manufacturing Processes, 2013, 28, 1279-1285.                                                                               | 4.7 | 34        |
| 67 | Ethylene Methacrylic Acid (EMAA) Single Splat Morphology. Coatings, 2013, 3, 82-97.                                                                                                                                         | 2.6 | 9         |
| 68 | Feedstock Material Considerations for Thermal Spray. , 2013, , 93-120.                                                                                                                                                      |     | 0         |
| 69 | Biological Performances of Titanium Scaffolds: A Review. Advanced Materials Research, 2012, 535-537, 1634-1637.                                                                                                             | 0.3 | 0         |
| 70 | Microstructural and antibacterial properties of zinc-substituted cobalt ferrite nanopowders synthesized by sol-gel methods. Journal of Applied Physics, 2012, 112, .                                                        | 2.5 | 90        |
| 71 | Effect of Zinc Substitution on Microstructure and Antibacterial Properties of Cobalt Ferrite<br>Nanopowders Synthesized by Sol-Gel Methods. Advanced Materials Research, 2012, 535-537, 436-439.                            | 0.3 | 11        |
| 72 | Improving the Generalization Ability of an Artificial Neural Network in Predicting In-Flight Particle<br>Characteristics of an Atmospheric Plasma Spray Process. Journal of Thermal Spray Technology, 2012,<br>21, 935-949. | 3.1 | 18        |

| #  | Article                                                                                                                                                                                                          | lF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Influence of Titanium Alloying Element Substrata on Bacterial Adhesion. Advanced Materials Research,<br>2012, 535-537, 992-995.                                                                                  | 0.3 | 1         |
| 74 | Spreading Behavior and Morphology of Ethylene Methacrylic Acid (EMAA) Deposits via the Flame Spray<br>Process. Coatings, 2012, 2, 76-93.                                                                         | 2.6 | 6         |
| 75 | A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomaterialia, 2012, 8, 2875-2888.                                                                   | 8.3 | 359       |
| 76 | Modeling the Coverage of Splat Areas Arising from Thermal Spray Processes. Journal of the American<br>Ceramic Society, 2012, 95, 1572-1580.                                                                      | 3.8 | 4         |
| 77 | Effect of substrate temperature on the splat formation of flame sprayed polypropylene. Surface and Coatings Technology, 2011, 206, 1180-1187.                                                                    | 4.8 | 8         |
| 78 | Artificial Neural Network application for predicting in-flight particle characteristics of an atmospheric plasma spray process. Surface and Coatings Technology, 2011, 205, 4886-4895.                           | 4.8 | 38        |
| 79 | Intelligent system for prediction and control: Application in plasma spray process. Expert Systems<br>With Applications, 2011, 38, 260-271.                                                                      | 7.6 | 18        |
| 80 | Selection of the implant and coating materials for optimized performance by means of nanoindentation. Acta Biomaterialia, 2011, 7, 874-881.                                                                      | 8.3 | 63        |
| 81 | Deposition effects of WC particle size on cold sprayed WC–Co coatings. Surface and Coatings<br>Technology, 2011, 205, 3260-3267.                                                                                 | 4.8 | 83        |
| 82 | Design and manufacture of Nd–Fe–B thick coatings by the thermal spray process. Surface and<br>Coatings Technology, 2011, 205, 4697-4704.                                                                         | 4.8 | 9         |
| 83 | Splat taxonomy of polymeric thermal spray coating. Surface and Coatings Technology, 2011, 205, 5028-5034.                                                                                                        | 4.8 | 14        |
| 84 | Microscopic observation of laser glazed yttria-stabilized zirconia coatings. Applied Surface Science, 2010, 256, 6213-6218.                                                                                      | 6.1 | 70        |
| 85 | Yield stress and zeta potential of washed and highly spherical oxide dispersions — Critical zeta potential and Hamaker constant. Powder Technology, 2010, 198, 114-119.                                          | 4.2 | 40        |
| 86 | Splat formation of polypropylene flame sprayed onto a flat surface. Surface and Coatings Technology, 2010, 205, 2518-2524.                                                                                       | 4.8 | 15        |
| 87 | Corrosion and oxidation properties of NiCr coatings sprayed in presence of gas shroud system.<br>Applied Surface Science, 2010, 256, 4322-4327.                                                                  | 6.1 | 36        |
| 88 | Using Artificial Neural Network to predict the particle characteristics of an Atmospheric Plasma<br>Spray process. , 2010, , .                                                                                   |     | 1         |
| 89 | IFTHSE Global 21: heat treatment and surface engineering in the twenty-first century Part 10 – Thermal spray coatings: a technology review. International Heat Treatment and Surface Engineering, 2010, 4, 7-13. | 0.2 | 28        |
| 90 | Impact of Nanoscale Roughness of Titanium Thin Film Surfaces on Bacterial Retention. Langmuir, 2010,<br>26, 1973-1982.                                                                                           | 3.5 | 177       |

| #   | Article                                                                                                                                                                                                       | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91  | Plasma-Enhanced Synthesis of Bioactive Polymeric Coatings from Monoterpene Alcohols: A Combined<br>Experimental and Theoretical Study. Biomacromolecules, 2010, 11, 2016-2026.                                | 5.4 | 63        |
| 92  | Bacterial attachment response to nanostructured titanium surfaces. , 2010, , .                                                                                                                                |     | 2         |
| 93  | Effect of ultrafine-grained titanium surfaces on adhesion of bacteria. Applied Microbiology and<br>Biotechnology, 2009, 83, 925-937.                                                                          | 3.6 | 100       |
| 94  | Artificial Neural Networks vs. Fuzzy Logic: Simple Tools to Predict and Control Complex<br>Processes—Application to Plasma Spray Processes. Journal of Thermal Spray Technology, 2008, 17,<br>365-376.        | 3.1 | 29        |
| 95  | Enhanced thick thermal barrier coatings that exhibit varying porosity. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2008, 476, 1-7.                 | 5.6 | 31        |
| 96  | Fabrication of a novel organic polymer thin film. Thin Solid Films, 2008, 516, 3884-3887.                                                                                                                     | 1.8 | 50        |
| 97  | Metal Ions Solubility in Plant Phosphoric AcidDegree of Ammonia Neutralization and Temperature<br>Effects. Industrial & Engineering Chemistry Research, 2008, 47, 1380-1385.                                  | 3.7 | 4         |
| 98  | Effect of Nanostructured Thermal Spray Coatings on Fatigue Behavior of Low-Carbon Steel. , 2008, , .                                                                                                          |     | 0         |
| 99  | Fatigue and mechanical properties of nanostructured and conventional titania (TiO2) thermal spray coatings. Surface and Coatings Technology, 2007, 201, 7589-7596.                                            | 4.8 | 66        |
| 100 | Mechanical property variations within thermal barrier coatings. Surface and Coatings Technology, 2007, 202, 362-369.                                                                                          | 4.8 | 35        |
| 101 | Erosion behavior of thermal sprayed, recycled polymer and ethylene–methacrylic acid composite coatings. Wear, 2007, 262, 274-281.                                                                             | 3.1 | 15        |
| 102 | Fatigue and deformation of HVOF sprayed WC–Co coatings and hard chrome plating. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2007,<br>456, 114-119. | 5.6 | 69        |
| 103 | Materials properties of barricade bricks for mining applications. Geotechnical and Geological Engineering, 2007, 25, 449-471.                                                                                 | 1.7 | 12        |
| 104 | Activism in Thermal Spray: A Call to Arms!. Journal of Thermal Spray Technology, 2007, 16, 167-167.                                                                                                           | 3.1 | 0         |
| 105 | The End of the Beginning; Now Let's Make a Real Effort!. Journal of Thermal Spray Technology, 2007, 16,<br>320-320.                                                                                           | 3.1 | 0         |
| 106 | One Way to Pick "Low-Hanging Fruit―Is To Chop the Tree Down!. Journal of Thermal Spray Technology,<br>2007, 16, 465-465.                                                                                      | 3.1 | 0         |
| 107 | Nanostructured and conventional YSZ coatings deposited using APS and TTPR techniques. Surface and Coatings Technology, 2006, 201, 338-346.                                                                    | 4.8 | 53        |
| 108 | Image-based extended finite element modeling of thermal barrier coatings. Surface and Coatings<br>Technology, 2006, 201, 2369-2380.                                                                           | 4.8 | 48        |

| #   | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 109 | Thermal Spray: Preserving 100 Years Of Technology. Journal of Thermal Spray Technology, 2006, 15, 5-8.                                                                                                                                      | 3.1 | 2         |
| 110 | Ammonium phosphate slurry rheology and particle properties—The influence of Fe(III) and Al(III)<br>impurities, solid concentration and degree of neutralization. Chemical Engineering Science, 2006, 61,<br>5856-5866.                      | 3.8 | 13        |
| 111 | Effects of Supercritical Carbon Dioxide on Phase Homogeneity, Morphology, and Mechanical<br>Properties of Poly(styrene-blend-ethylene-stat-vinyl acetate). Macromolecules, 2005, 38, 9180-9186.                                             | 4.8 | 5         |
| 112 | Mechanical and erosion properties of CaCO3-EMAA thermal sprayed coatings. Polymer Engineering and Science, 2004, 44, 1448-1459.                                                                                                             | 3.1 | 16        |
| 113 | Computational Study and Experimental Comparison of the In-Flight Particle Behavior for an External<br>Injection Plasma Spray Process. Journal of Thermal Spray Technology, 2003, 12, 508-522.                                               | 3.1 | 26        |
| 114 | Peel-strength behavior of bilayer thermal-sprayed polymer coatings. Journal of Applied Polymer<br>Science, 2003, 88, 214-226.                                                                                                               | 2.6 | 21        |
| 115 | Phase, structural and microstructural investigations of plasma sprayed hydroxyapatite coatings.<br>Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2003, 360, 70-84.                 | 5.6 | 174       |
| 116 | Small-angle neutron scattering study of the role of feedstock particle size on the microstructural<br>behavior of plasma-sprayed yttria-stabilized zirconia deposits. Journal of Materials Research, 2003, 18,<br>624-634.                  | 2.6 | 10        |
| 117 | Hydroxyapatite/polymer composite flame-sprayed coatings for orthopedic applications. Journal of Biomaterials Science, Polymer Edition, 2002, 13, 977-990.                                                                                   | 3.5 | 30        |
| 118 | Biomedical Application of Apatites. Reviews in Mineralogy and Geochemistry, 2002, 48, 631-672.                                                                                                                                              | 4.8 | 93        |
| 119 | Surface characteristics and dissolution behavior of plasma-sprayed hydroxyapatite coating. Journal of Biomedical Materials Research Part B, 2002, 62, 228-236.                                                                              | 3.1 | 123       |
| 120 | Bimodal distribution of mechanical properties on plasma sprayed nanostructured partially stabilized<br>zirconia. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 2002, 327, 224-232. | 5.6 | 184       |
| 121 | Microstructural characteristics of cold-sprayed nanostructured WC–Co coatings. Thin Solid Films, 2002, 416, 129-135.                                                                                                                        | 1.8 | 223       |
| 122 | Deposition efficiency, mechanical properties and coating roughness in cold-sprayed titanium. Journal of Materials Science Letters, 2002, 21, 1687-1689.                                                                                     | 0.5 | 67        |
| 123 | Influence of Plasma Spray Parameters on the Cracking Behavior of Yttria Stabilized Zirconia Coatings.<br>Journal of Failure Analysis and Prevention, 2001, 1, 55-64.                                                                        | 0.9 | 2         |
| 124 | Evaluation of microhardness and elastic modulus of thermally sprayed nanostructured zirconia coatings. Surface and Coatings Technology, 2001, 135, 166-172.                                                                                 | 4.8 | 185       |
| 125 | Microstructural characterization of yttria-stabilized zirconia plasma-sprayed deposits using multiple<br>small-angle neutron scattering. Acta Materialia, 2001, 49, 1661-1675.                                                              | 7.9 | 117       |
| 126 | Integrity of nanostructured partially stabilized zirconia after plasma spray processing. Materials<br>Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2001,<br>313, 75-82.                        | 5.6 | 147       |

| #   | Article                                                                                                                                                                                                                                                           | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 127 | Material fundamentals and clinical performance of plasma-sprayed hydroxyapatite coatings: A review.<br>Journal of Biomedical Materials Research Part B, 2001, 58, 570-592.                                                                                        | 3.1 | 895       |
| 128 | Porosity determinations in thermally sprayed hydroxyapatite coatings. Journal of Materials Science, 2001, 36, 3891-3896.                                                                                                                                          | 3.7 | 48        |
| 129 | Thermal Spray Processing of Nanoscale Materials II. Journal of Thermal Spray Technology, 2001, 10, 147-182.                                                                                                                                                       | 3.1 | 16        |
| 130 | Influence of Plasma Spray Parameters on In-Flight Characteristics of ZrO2?8 wt% Y2O3Ceramic Particles. Journal of the American Ceramic Society, 2001, 84, 685-692.                                                                                                | 3.8 | 28        |
| 131 | Influence of Plasma Spray Parameters on Formation and Morphology of ZrO2?8 wt% Y2O3Deposits.<br>Journal of the American Ceramic Society, 2001, 84, 693-700.                                                                                                       | 3.8 | 32        |
| 132 | On the size-dependent phase transformation in nanoparticulate zirconia. Materials Science &<br>Engineering A: Structural Materials: Properties, Microstructure and Processing, 2000, 286, 169-178.                                                                | 5.6 | 236       |
| 133 | Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings. I:<br>Four point bend test. Materials Science & Engineering A: Structural Materials: Properties,<br>Microstructure and Processing, 2000, 284, 29-40.        | 5.6 | 82        |
| 134 | Influence of plasma spray parameters on mechanical properties of yttria stabilized zirconia coatings.<br>II: Acoustic emission response. Materials Science & Engineering A: Structural Materials:<br>Properties, Microstructure and Processing, 2000, 284, 41-50. | 5.6 | 51        |
| 135 | Composite Coatings of Si <sub>3</sub> N <sub>4</sub> -Soda Lime Silica Produced by the Thermal Spray<br>Process. Journal of Materials Engineering and Performance, 2000, 9, 603-608.                                                                              | 2.5 | 8         |
| 136 | Deformation of Plasma Sprayed Thermal Barrier Coatings. Journal of Engineering for Gas Turbines and Power, 2000, 122, 387-392.                                                                                                                                    | 1.1 | 8         |
| 137 | Effects of Pores on Mechanical Properties of Plasmaâ€Sprayed Ceramic Coatings. Journal of the<br>American Ceramic Society, 2000, 83, 578-584.                                                                                                                     | 3.8 | 123       |
| 138 | Modelling of elastic constants of plasma spray deposits with ellipsoid-shaped voids. Acta Materialia,<br>1999, 47, 1575-1586.                                                                                                                                     | 7.9 | 65        |
| 139 | Evolution of the void structure in plasma-sprayed YSZ deposits during heating. Materials Science<br>& Engineering A: Structural Materials: Properties, Microstructure and Processing, 1999, 272,<br>215-221.                                                      | 5.6 | 88        |
| 140 | Relationships between the mode II fracture toughness and microstructure of thermal spray coatings.<br>Surface and Coatings Technology, 1999, 114, 114-128.                                                                                                        | 4.8 | 37        |
| 141 | Quantitative Evaluation of Void Distributions within a Plasmaâ€5prayed Ceramic. Journal of the American Ceramic Society, 1999, 82, 17-21.                                                                                                                         | 3.8 | 49        |
| 142 | Nondestructive Determination of Thickness and Elastic Modulus of Plasma Spray Coatings Using Laser<br>Ultrasonics. , 1999, , 373-380.                                                                                                                             |     | 3         |
| 143 | Deformation of Plasma Sprayed Thermal Barrier Coatings. , 1999, , .                                                                                                                                                                                               |     | 0         |
| 144 | The effect of high-velocity oxygen fuel, thermally sprayed WC–Co coatings on the high-cycle fatigue of aluminium alloy and steel. Journal of Materials Science, 1998, 33, 3095-3100.                                                                              | 3.7 | 16        |

| #   | Article                                                                                                                                                 | IF   | CITATIONS |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 145 | Oxyapatite in hydroxyapatite coatings. Journal of Materials Science, 1998, 33, 3985-3991.                                                               | 3.7  | 94        |
| 146 | Microstructural Index to Quantify Thermal Spray Deposit Microstructures Using Image Analysis.<br>Journal of Thermal Spray Technology, 1998, 7, 229-241. | 3.1  | 30        |
| 147 | Amorphous phase formation in plasma-sprayed hydroxyapatite coatings. , 1998, 39, 407-414.                                                               |      | 192       |
| 148 | Thermal processing of hydroxyapatite for coating production. Journal of Biomedical Materials<br>Research Part B, 1998, 39, 580-587.                     | 3.1  | 211       |
| 149 | Thermal Conductivity of a Zirconia Thermal Barrier Coating. Journal of Thermal Spray Technology, 1998, 7, 43-46.                                        | 3.1  | 63        |
| 150 | Long-term engineering properties of recycled plastic lumber used in pier construction. Resources,<br>Conservation and Recycling, 1998, 23, 243-258.     | 10.8 | 45        |
| 151 | Physical and relaxation properties of flame-sprayed ethylene-methacrylic acid copolymer. Polymer<br>Engineering and Science, 1998, 38, 1873-1881.       | 3.1  | 10        |
| 152 | Acoustic emission studies on thermal spray materials. Surface and Coatings Technology, 1998, 102, 1-7.                                                  | 4.8  | 22        |
| 153 | Thermal expansion properties of metallic and cermet coatings. Surface and Coatings Technology, 1998, 102, 19-24.                                        | 4.8  | 13        |
| 154 | Effects of thermal gradient and residual stresses on thermal barrier coating fracture. Mechanics of<br>Materials, 1998, 27, 91-110.                     | 3.2  | 101       |
| 155 | Indentation Response of Molybdenum Disilicide. Journal of Materials Research, 1998, 13, 2662-2671.                                                      | 2.6  | 22        |
| 156 | Thermal Analysis of Amorphous Phases in Hydroxyapatite Coatings. Journal of the American Ceramic<br>Society, 1998, 81, 106-112.                         | 3.8  | 173       |
| 157 | Nanomaterial Deposits Formed by DC Plasma Spraying of Liquid Feedstocks. Journal of the American<br>Ceramic Society, 1998, 81, 121-128.                 | 3.8  | 88        |
| 158 | Thermal processing of hydroxyapatite for coating production. , 1998, 39, 580.                                                                           |      | 2         |
| 159 | Thermal processing of hydroxyapatite for coating production. Journal of Biomedical Materials<br>Research Part B, 1998, 39, 580-587.                     | 3.1  | 3         |
| 160 | Thermal Conductivity of a Zirconia Thermal Barrier Coating. Journal of Thermal Spray Technology, 1998, 7, 43-46.                                        | 3.1  | 2         |
| 161 | Variability of hydroxyapatite-coated dental implants. International Journal of Oral and Maxillofacial<br>Implants, 1998, 13, 601-10.                    | 1.4  | 27        |
| 162 | Phase Transformation as a Function of Particle Size in Nanocrystalline Zirconia. Materials Research<br>Society Symposia Proceedings, 1997, 481, 613.    | 0.1  | 4         |

| #   | Article                                                                                                                                                                                   | IF  | CITATIONS |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 163 | Preparation of nanophase materials by thermal spray processing of liquid precursors. Scripta<br>Materialia, 1997, 9, 137-140.                                                             | 0.5 | 79        |
| 164 | Nanomaterial powders and deposits prepared by flame spray processing of liquid precursors. Scripta<br>Materialia, 1997, 8, 61-74.                                                         | 0.5 | 107       |
| 165 | Influence of Spray Angle on the Pore and Crack Microstructure of Plasmaâ€Sprayed Deposits. Journal of the American Ceramic Society, 1997, 80, 733-742.                                    | 3.8 | 97        |
| 166 | The coalescence of combustion-sprayed ethylene–methacrylic acid copolymer. Journal of Materials<br>Science, 1997, 32, 2099-2106.                                                          | 3.7 | 22        |
| 167 | Mercury intrusion porosimetry of plasma-sprayed ceramic. Journal of Materials Science, 1997, 32, 3925-3932.                                                                               | 3.7 | 35        |
| 168 | Characterization of the closed porosity in plasma-sprayed alumina. Journal of Materials Science, 1997, 32, 3407-3410.                                                                     | 3.7 | 15        |
| 169 | Quality control of the intrinsic deposition efficiency from the controls of the splat morphologies and the deposit microstructure. Journal of Thermal Spray Technology, 1997, 6, 153-166. | 3.1 | 25        |
| 170 | Alumina-base plasma-sprayed materials—Part II: Phase transformations in aluminas. Journal of Thermal<br>Spray Technology, 1997, 6, 439-444.                                               | 3.1 | 42        |
| 171 | Tensile toughness test and high temperature fracture analysis of thermal barrier coatings. Acta<br>Materialia, 1997, 45, 1767-1784.                                                       | 7.9 | 67        |
| 172 | Plasma spray synthesis of nanomaterial powders and deposits. Materials Science & Engineering A:<br>Structural Materials: Properties, Microstructure and Processing, 1997, 238, 275-286.   | 5.6 | 181       |
| 173 | Evaluation of off-angle thermal spray. Surface and Coatings Technology, 1997, 89, 213-224.                                                                                                | 4.8 | 56        |
| 174 | Effects of the spray angle on splat morphology during thermal spraying. Surface and Coatings<br>Technology, 1997, 91, 107-115.                                                            | 4.8 | 77        |
| 175 | Characteristics of the liquid flame spray process. Surface and Coatings Technology, 1997, 90, 210-216.                                                                                    | 4.8 | 113       |
| 176 | Effect of substrate and bond coat on contact damage in zirconia-based plasma-sprayed coatings. Thin<br>Solid Films, 1997, 293, 251-260.                                                   | 1.8 | 37        |
| 177 | Acoustic emission responses of plasma-sprayed alumina-3% titania deposits. Thin Solid Films, 1997, 310, 108-114.                                                                          | 1.8 | 9         |
| 178 | Elastic Response of Thermal Spray Deposits under Indentation Tests. Journal of the American Ceramic<br>Society, 1997, 80, 2093-2099.                                                      | 3.8 | 138       |
| 179 | Acoustic Emission Studies of Aluminaâ€13% Titania Freeâ€Standing Forms during Fourâ€Point Bend Tests.<br>Journal of the American Ceramic Society, 1997, 80, 2382-2394.                    | 3.8 | 20        |
| 180 | Standardize and deliver. Journal of Thermal Spray Technology, 1996, 5, 2-3.                                                                                                               | 3.1 | 0         |

| #   | Article                                                                                                                                                                                                                              | IF   | CITATIONS |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 181 | Structural changes of thermally sprayed hydroxyapatite investigated by Rietveld analysis.<br>Biomaterials, 1996, 17, 639-645.                                                                                                        | 11.4 | 49        |
| 182 | Mechanical characterization of plasma sprayed ceramic coatings on metal substrates by contact<br>testing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and<br>Processing, 1996, 208, 158-165. | 5.6  | 78        |
| 183 | Contact Damage in Plasma-Sprayed Alumina-Based Coatings. Journal of the American Ceramic Society, 1996, 79, 1907-1914.                                                                                                               | 3.8  | 54        |
| 184 | Concept of Functionally Graded Materials for Advanced Thermal Barrier Coating Applications.<br>Journal of the American Ceramic Society, 1996, 79, 3003-3012.                                                                         | 3.8  | 188       |
| 185 | Highâ€Temperature Chemical Stability of Plasmaâ€Sprayed Ca05Sr05Zr4P6O24 Coatings on Nicalon/SiC<br>Ceramic Matrix Composite and Niâ€Based Superalloy Substrates. Journal of the American Ceramic<br>Society, 1996, 79, 2759-2762.   | 3.8  | 10        |
| 186 | Statistical analysis of microhardness variations in thermal spray coatings. Journal of Materials<br>Science, 1995, 30, 111-117.                                                                                                      | 3.7  | 88        |
| 187 | Simulation of Hardness Testing on Plasma-Sprayed Coatings. Journal of the American Ceramic Society, 1995, 78, 1406-1410.                                                                                                             | 3.8  | 11        |
| 188 | Effects of vacuum plasma spray processing parameters on splat morphology. Journal of Thermal Spray<br>Technology, 1995, 4, 67-74.                                                                                                    | 3.1  | 42        |
| 189 | Real-time imaging of the plasma spray process—Work in progress. Journal of Thermal Spray<br>Technology, 1995, 4, 374-376.                                                                                                            | 3.1  | 6         |
| 190 | An evaluation of methacrylic acid-modified poly(ethylene) coatings applied by flame spray technology.<br>Progress in Organic Coatings, 1995, 25, 205-216.                                                                            | 3.9  | 18        |
| 191 | In vitro testing of plasma-sprayed hydroxyapatite coatings. Journal of Materials Science: Materials in<br>Medicine, 1994, 5, 219-224.                                                                                                | 3.6  | 67        |
| 192 | The significance of Thermal Spray Awards. Journal of Thermal Spray Technology, 1994, 3, 243-244.                                                                                                                                     | 3.1  | 0         |
| 193 | A test for coating adhesion on flat substrates—a technical note. Journal of Thermal Spray<br>Technology, 1994, 3, 184-190.                                                                                                           | 3.1  | 36        |
| 194 | Measurement and analysis of adhesion strength for thermally sprayed coatings. Journal of Thermal<br>Spray Technology, 1994, 3, 75-104.                                                                                               | 3.1  | 103       |
| 195 | Conferences and meetings — Who's holding the gun?. Journal of Thermal Spray Technology, 1994, 3,<br>331-332.                                                                                                                         | 3.1  | 0         |
| 196 | Measurement of adhesion for thermally sprayed materials. Journal of Adhesion Science and Technology, 1993, 7, 1235-1264.                                                                                                             | 2.6  | 45        |
| 197 | Wear of coatings in wool-severing applications. Journal of Materials Science, 1992, 27, 6687-6694.                                                                                                                                   | 3.7  | 1         |
| 198 | Current problems in plasma spray processing. Journal of Thermal Spray Technology, 1992, 1, 341.                                                                                                                                      | 3.1  | 43        |

12

| #   | Article                                                                                                                                            | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 199 | Thermal and Mechanical Properties of Thermal Barrier Coatings. International Journal of Turbo and<br>Jet Engines, 1991, 8, .                       | 0.7 | 0         |
| 200 | Tensile adhesion testing methodology for thermally sprayed coatings. Journal of Materials<br>Engineering, 1990, 12, 151-158.                       | 0.3 | 35        |
| 201 | Mode II fracture toughness test for thermally sprayed coatings. International Journal of Fracture, 1990, 43, R57-R60.                              | 2.2 | 2         |
| 202 | The manufacture and microstructure of fiber-reinforced thermally sprayed coatings. Surface and Coatings Technology, 1989, 37, 89-110.              | 4.8 | 12        |
| 203 | Failure processes within ceramic coatings at high temperatures. Journal of Materials Science, 1989, 24, 3511-3520.                                 | 3.7 | 33        |
| 204 | Instrumented tensile adhesion tests on plasma sprayed thermal barrier coatings. Journal of Materials<br>Engineering, 1989, 11, 275-282.            | 0.3 | 15        |
| 205 | The variability in strength of thermally sprayed coatings. Surface and Coatings Technology, 1988, 34, 43-50.                                       | 4.8 | 33        |
| 206 | Thermal Spraying in Japan. Jom, 1988, 40, 16-16.                                                                                                   | 1.9 | 0         |
| 207 | Material Property Measurements on Thermal Barrier Coatings. , 1988, , .                                                                            |     | 0         |
| 208 | Coating Characterization and Testing. Jom, 1987, 39, 18-18.                                                                                        | 1.9 | 0         |
| 209 | DISCRIMINATION OF MICRO- AND MACROCRACKING PROCESSES IN PLASMA SPRAYED CERAMIC COATINGS. , 1986, , 585-594.                                        |     | 0         |
| 210 | Acoustic Emission Evaluation of Plasma-Sprayed Thermal Barrier Coatings. Journal of Engineering for<br>Gas Turbines and Power, 1985, 107, 142-146. | 1,1 | 21        |
| 211 | Electron Microscopic Studies of Plasma-Sprayed Coatings. , 1985, , 265-278.                                                                        |     | 1         |
| 212 | Neutron and X-ray diffraction of plasma-sprayed zirconia-yttria thermal barrier coatings. Thin Solid<br>Films, 1984, 119, 159-171.                 | 1.8 | 19        |
| 213 | Failure analysis of plasma-sprayed thermal barrier coatings. Thin Solid Films, 1984, 119, 173-184.                                                 | 1.8 | 49        |
| 214 | Performance of thermal barrier coatings in high heat flux environments. Thin Solid Films, 1984, 119, 195-202.                                      | 1.8 | 92        |
| 215 | Failure during thermal cycling of plasma-sprayed thermal barrier coatings. Thin Solid Films, 1983, 108, 427-437.                                   | 1.8 | 71        |
| 216 | Characterization of the Mechanical Properties of Plasma-Sprayed Coatings. , 1983, , 473-489.                                                       |     | 8         |

| #   | Article                                                                                                                                                                    | IF  | CITATIONS |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 217 | Characterization of Imperfections in Plasma-Sprayed Titania. , 1983, , 465-472.                                                                                            |     | 0         |
| 218 | The Adhesion of Plasma Sprayed Ceramic Coatings to Metals. , 1981, , 619-628.                                                                                              |     | 10        |
| 219 | Fabrication of Ti14Nb4Sn Alloys for Bone Tissue Engineering Applications. Key Engineering Materials, 0, 520, 214-219.                                                      | 0.4 | 1         |
| 220 | A Taguchi Design Study for Optimisation of Plasma Sprayed Hydroxyapatite Coatings. Materials Science<br>Forum, 0, 773-774, 590-601.                                        | 0.3 | 0         |
| 221 | Mechanical Response of Composite Sandwich Panels: Deformation and Energy Absorption. Key<br>Engineering Materials, 0, 535-536, 409-412.                                    | 0.4 | 3         |
| 222 | Sol-Gel Synthesized Copper-Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications.<br>Journal of Nano Research, 0, 25, 110-121.                              | 0.8 | 22        |
| 223 | Hydroxyapatite and Titanium Composite Coatings on Austenitic Stainless Steel Substrates Using Direct<br>Material Deposition. Materials Science Forum, 0, 773-774, 602-615. | 0.3 | 0         |
| 224 | Sol-Gel Synthesized Copper-Substituted Cobalt Ferrite Nanoparticles for Biomedical Applications.<br>Journal of Nano Research, 0, 22, 95-106.                               | 0.8 | 28        |
| 225 | Biomimetic Creation of Surfaces on Porous Titanium for Biomedical Applications. Advanced Materials<br>Research, 0, 896, 259-262.                                           | 0.3 | 2         |
| 226 | Acoustic Emission Responses of Plasma Sprayed Ceramics During Four Point Bend Tests. Ceramic Engineering and Science Proceedings, 0, , 44-50.                              | 0.1 | 5         |
| 227 | Failure and Acoustic-Emission Response of Plasma-Sprayed ZrO2-8 wt% Y2O3 Coatings. Ceramic Engineering and Science Proceedings, 0, , 772-792.                              | 0.1 | 14        |
| 228 | Mechanical Property Measurements of Plasma-Sprayed Thermal-Barrier Coatings Subjected to Oxidation. Ceramic Engineering and Science Proceedings, 0, , 479-490.             | 0.1 | 9         |
| 229 | Surface Characterization of Plasma Sprayed Hydroxyapatite Coatings. Ceramic Engineering and Science<br>Proceedings, 0, , 251-258.                                          | 0.1 | 1         |
| 230 | Deformation Characteristics of Plasma Sprayed Thermal Barrier Coatings. Ceramic Engineering and Science Proceedings, 0, , 681-689.                                         | 0.1 | 0         |