Matthew E Poynter

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6022030/publications.pdf

Version: 2024-02-01

125 papers 6,113 citations

66343 42 h-index 76900 74 g-index

127 all docs

 $\begin{array}{c} 127 \\ \text{docs citations} \end{array}$

times ranked

127

9146 citing authors

#	Article	IF	CITATIONS
1	Recent advances torwards understanding redox mechanisms in the activation of nuclear factor \hat{l}^p b. Free Radical Biology and Medicine, 2000, 28, 1317-1327.	2.9	635
2	Peroxisome Proliferator-activated Receptor α Activation Modulates Cellular Redox Status, Represses Nuclear Factor-ÎB Signaling, and Reduces Inflammatory Cytokine Production in Aging. Journal of Biological Chemistry, 1998, 273, 32833-32841.	3.4	493
3	Tumor Necrosis Factor–α Overexpression in Lung Disease. American Journal of Respiratory and Critical Care Medicine, 2005, 171, 1363-1370.	5.6	231
4	Serum Amyloid A Activates the NLRP3 Inflammasome and Promotes Th17 Allergic Asthma in Mice. Journal of Immunology, 2011, 187, 64-73.	0.8	203
5	A Prominent Role for Airway Epithelial NF-κB Activation in Lipopolysaccharide-Induced Airway Inflammation. Journal of Immunology, 2003, 170, 6257-6265.	0.8	171
6	Bone Marrowâ€Derived Mesenchymal Stromal Cells Inhibit Th2â€Mediated Allergic Airways Inflammation in Mice. Stem Cells, 2011, 29, 1137-1148.	3.2	170
7	NF-κB Activation in Airways Modulates Allergic Inflammation but Not Hyperresponsiveness. Journal of Immunology, 2004, 173, 7003-7009.	0.8	149
8	Rapid Activation of Nuclear Factor-1ºB in Airway Epithelium in a Murine Model of Allergic Airway Inflammation. American Journal of Pathology, 2002, 160, 1325-1334.	3.8	146
9	Mechanisms of Asthma in Obesity. Pleiotropic Aspects of Obesity Produce Distinct Asthma Phenotypes. American Journal of Respiratory Cell and Molecular Biology, 2016, 54, 601-608.	2.9	122
10	Pulmonary Stromal-Derived Factor-1 Expression and Effect on Neutrophil Recruitment during Acute Lung Injury. Journal of Immunology, 2007, 178, 8148-8157.	0.8	117
11	Nuclear Factor-κB Activation in Airway Epithelium Induces Inflammation and Hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 2008, 177, 959-969.	5.6	113
12	Nuclear Factor ÂB, Airway Epithelium, and Asthma: Avenues for Redox Control. Proceedings of the American Thoracic Society, 2009, 6, 249-255.	3.5	109
13	A Lipidomics Analysis of the Relationship Between Dietary Fatty Acid Composition and Insulin Sensitivity in Young Adults. Diabetes, 2013, 62, 1054-1063.	0.6	107
14	Mitochondrial ROS induced by chronic ethanol exposure promote hyper-activation of the NLRP3 inflammasome. Redox Biology, 2017, 12, 883-896.	9.0	98
15	Crosstalk between CXCR4/Stromal Derived Factor-1 and VLA-4/VCAM-1 Pathways Regulates Neutrophil Retention in the Bone Marrow. Journal of Immunology, 2009, 182, 604-612.	0.8	93
16	Obesity Is Associated with Neutrophil Dysfunction and Attenuation of Murine Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 120-127.	2.9	91
17	Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Molecular and Cellular Biochemistry, 2002, 234/235, 71-80.	3.1	82
18	Mitochondria-targeted drugs enhance Nlrp3 inflammasome-dependent IL- $1\hat{l}^2$ secretion in association with alterations in cellular redox and energy status. Free Radical Biology and Medicine, 2013, 60, 233-245.	2.9	76

#	Article	IF	CITATIONS
19	Epithelial NF-κB Orchestrates House Dust Mite–Induced Airway Inflammation, Hyperresponsiveness, and Fibrotic Remodeling. Journal of Immunology, 2013, 191, 5811-5821.	0.8	76
20	Pivotal Advance: Toll-like receptor regulation of scavenger receptor-A-mediated phagocytosis. Journal of Leukocyte Biology, 2009, 85, 595-605.	3.3	73
21	Endoplasmic reticulum stress mediates house dust mite-induced airway epithelial apoptosis and fibrosis. Respiratory Research, 2013, 14, 141.	3.6	73
22	Inhibition of Arginase Activity Enhances Inflammation in Mice with Allergic Airway Disease, in Association with Increases in Protein <i>S</i> -Nitrosylation and Tyrosine Nitration. Journal of Immunology, 2008, 181, 4255-4264.	0.8	71
23	<i>Aspergillus fumigatus</i> Generates an Enhanced Th2-Biased Immune Response in Mice with Defective Cystic Fibrosis Transmembrane Conductance Regulator. Journal of Immunology, 2006, 177, 5186-5194.	0.8	70
24	Airway Epithelial NF-κB Activation Promotes Allergic Sensitization to an Innocuous Inhaled Antigen. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 631-638.	2.9	70
25	Reactive Nitrogen Species and Cell Signaling. American Journal of Respiratory and Critical Care Medicine, 2002, 166, S9-S16.	5.6	63
26	Attenuation of Th1 Effector Cell Responses and Susceptibility to Experimental Allergic Encephalomyelitis in Histamine H2 Receptor Knockout Mice Is Due to Dysregulation of Cytokine Production by Antigen-Presenting Cells. American Journal of Pathology, 2004, 164, 883-892.	3.8	63
27	Nitrogen Dioxide Promotes Allergic Sensitization to Inhaled Antigen. Journal of Immunology, 2007, 179, 3680-3688.	0.8	60
28	Histamine H4 Receptor Optimizes T Regulatory Cell Frequency and Facilitates Anti-Inflammatory Responses within the Central Nervous System. Journal of Immunology, 2012, 188, 541-547.	0.8	60
29	DUOX1 mediates persistent epithelial EGFR activation, mucous cell metaplasia, and airway remodeling during allergic asthma. JCI Insight, 2016, 1, e88811.	5.0	58
30	Flagellar Motility Is a Key Determinant of the Magnitude of the Inflammasome Response to Pseudomonas aeruginosa. Infection and Immunity, 2013, 81, 2043-2052.	2.2	54
31	Hyperleptinemia is associated with impaired pulmonary host defense. JCI Insight, 2016, 1, .	5.0	53
32	Nitrogen dioxide enhances allergic airway inflammation and hyperresponsiveness in the mouse. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L144-L152.	2.9	52
33	Pharmacological inhibitors of TRPV4 channels reduce cytokine production, restore endothelial function and increase survival in septic mice. Scientific Reports, 2016, 6, 33841.	3.3	52
34	Soy Biodiesel and Petrodiesel Emissions Differ in Size, Chemical Composition and Stimulation of Inflammatory Responses in Cells and Animals. Environmental Science & Echnology, 2013, 47, 12496-12504.	10.0	50
35	Genetic variation in chromosome Y regulates susceptibility to influenza A virus infection. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3491-3496.	7.1	49
36	Interleukin-1 Receptor and Caspase-1 Are Required for the Th17 Response in Nitrogen Dioxide–Promoted Allergic Airway Disease. American Journal of Respiratory Cell and Molecular Biology, 2013, 48, 655-664.	2.9	47

#	Article	IF	CITATIONS
37	The Role of Leptin in the Development of Pulmonary Neutrophilia in Infection and Acute Lung Injury*. Critical Care Medicine, 2014, 42, e143-e151.	0.9	46
38	Protein disulfide isomerase–endoplasmic reticulum resident protein 57 regulates allergen-induced airways inflammation, fibrosis, and hyperresponsiveness. Journal of Allergy and Clinical Immunology, 2016, 137, 822-832.e7.	2.9	46
39	Susceptibility to Anthrax Lethal Toxin Is Controlled by Three Linked Quantitative Trait Loci. American Journal of Pathology, 2003, 163, 1735-1741.	3.8	45
40	Airway Epithelial NF-l $^{\circ}$ B Activation Modulates Asbestos-Induced Inflammation and Mucin Production In Vivo. Journal of Immunology, 2007, 178, 1800-1808.	0.8	45
41	Acute Lung Injury with Endotoxin or NO2 Does Not Enhance Development of Airway Epithelium from Bone Marrow. Molecular Therapy, 2005, 12, 680-686.	8.2	43
42	Age-Associated Alterations in Splenic iNOS Regulation: Influence of Constitutively Expressed IFN-Î ³ and Correction Following Supplementation with PPARα Activators or Vitamin E. Cellular Immunology, 1999, 195, 127-136.	3.0	42
43	Th2 allergic immune response to inhaled fungal antigens is modulated by TLRâ€4â€independent bacterial products. European Journal of Immunology, 2009, 39, 776-788.	2.9	42
44	Pregnant serum induces neuroinflammation and seizure activity via TNF $\hat{\textbf{1}}\pm$. Experimental Neurology, 2012, 234, 398-404.	4.1	42
45	A Comparative Study of Lung Host Defense in Murine Obesity Models. Insights into Neutrophil Function. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 188-200.	2.9	42
46	Conjugated bile acids attenuate allergen-induced airway inflammation and hyperresposiveness by inhibiting UPR transducers. JCI Insight, 2019, 4, .	5.0	42
47	Acrolein Inhalation Suppresses Lipopolysaccharide-Induced Inflammatory Cytokine Production but Does Not Affect Acute Airways Neutrophilia. Journal of Immunology, 2008, 181, 736-745.	0.8	41
48	IL-1/inhibitory κB kinase ε–induced glycolysis augment epithelial effector function and promote allergic airways disease. Journal of Allergy and Clinical Immunology, 2018, 142, 435-450.e10.	2.9	41
49	Dietary saturated fat and monounsaturated fat have reversible effects on brain function and the secretion of pro-inflammatory cytokines in young women. Metabolism: Clinical and Experimental, 2016, 65, 1582-1588.	3.4	38
50	Kinetics and isotype assessment of antibodies targeting the spike protein receptorâ€binding domain of severe acute respiratory syndromeâ€coronavirusâ€2 in COVIDâ€19 patients as a function of age, biological sex and disease severity. Clinical and Translational Immunology, 2020, 9, e1189.	3.8	38
51	Ethanol and Other Short-Chain Alcohols Inhibit NLRP3 Inflammasome Activation through Protein Tyrosine Phosphatase Stimulation. Journal of Immunology, 2016, 197, 1322-1334.	0.8	37
52	Molecular mechanisms of nitrogen dioxide induced epithelial injury in the lung. Molecular and Cellular Biochemistry, 2002, 234-235, 71-80.	3.1	37
53	Interleukin-6 as a biomarker for asthma: hype or is there something else?. European Respiratory Journal, 2016, 48, 979-981.	6.7	35
54	Pathophysiology to Phenotype in the Asthma of Obesity. Annals of the American Thoracic Society, 2017, 14, S395-S398.	3.2	34

#	Article	IF	Citations
55	Airway epithelial regulation of allergic sensitization in asthma. Pulmonary Pharmacology and Therapeutics, 2012, 25, 438-446.	2.6	33
56	Widespread natural variation in murine natural killer Tâ€eell number and function. Immunology, 2008, 125, 331-343.	4.4	32
57	Antigen-induced mast cell expansion and bronchoconstriction in a mouse model of asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2014, 306, L196-L206.	2.9	32
58	Lipidomic evidence that lowering the typical dietary palmitate to oleate ratio in humans decreases the leukocyte production of proinflammatory cytokines and muscle expression of redox-sensitive genes. Journal of Nutritional Biochemistry, 2015, 26, 1599-1606.	4.2	32
59	Effect of a chemical chaperone, tauroursodeoxycholic acid, on HDM-induced allergic airway disease. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1243-L1259.	2.9	32
60	Weight Loss Decreases Inherent and Allergic Methacholine Hyperresponsiveness in Mouse Models of Diet-Induced Obese Asthma. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 176-187.	2.9	31
61	Airway Epithelial Indoleamine 2,3-Dioxygenase Inhibits CD4 ⁺ T Cells during <i>Aspergillus fumigatus</i> Antigen Exposure. American Journal of Respiratory Cell and Molecular Biology, 2011, 44, 11-23.	2.9	30
62	Aligning mouse models of asthma to human endotypes of disease. Respirology, 2014, 19, 823-833.	2.3	30
63	Epithelial, dendritic, and CD4+ T cell regulation of and by reactive oxygen and nitrogen species in allergic sensitization. Biochimica Et Biophysica Acta - General Subjects, 2011, 1810, 1025-1034.	2.4	29
64	Pyruvate Kinase M2 Promotes Expression of Proinflammatory Mediators in House Dust Mite–Induced Allergic Airways Disease. Journal of Immunology, 2020, 204, 763-774.	0.8	29
65	The Tick Salivary Protein, Salp15, Inhibits the Development of Experimental Asthma. Journal of Immunology, 2007, 178, 7064-7071.	0.8	28
66	Serum amyloid A3 is required for normal weight and immunometabolic function in mice. PLoS ONE, 2018, 13, e0192352.	2.5	28
67	The Temporal Evolution of Airways Hyperresponsiveness and Inflammation. Journal of Allergy & Therapy, 2012, 01, 1-7.	0.1	27
68	Activation of NK1.1+T Cellsin Vitroand Their Possible Role in Age-Associated Changes in Inducible IL-4 Production. Cellular Immunology, 1997, 179, 22-29.	3.0	26
69	Distinct Functions of Airway Epithelial Nuclear Factor-l̂ºB Activity Regulate Nitrogen Dioxide–Induced Acute Lung Injury. American Journal of Respiratory Cell and Molecular Biology, 2010, 43, 443-451.	2.9	25
70	Acrolein exposure suppresses antigen-induced pulmonary inflammation. Respiratory Research, 2013, 14, 107.	3.6	25
71	Mouse Invariant Monoclonal Antibody NKT14: A Novel Tool to Manipulate iNKT Cell Function In Vivo. PLoS ONE, 2015, 10, e0140729.	2.5	24
72	Syk-dependent glycolytic reprogramming in dendritic cells regulates IL- \hat{l}^2 production to \hat{l}^2 -glucan ligands in a TLR-independent manner. Journal of Leukocyte Biology, 2019, 106, 1325-1335.	3.3	24

#	Article	IF	Citations
73	NO2 inhalation induces maturation of pulmonary CD11c+ cells that promote antigen-specific CD4+ T cell polarization. Respiratory Research, 2010, 11, 102.	3.6	23
74	Detrimental effects of albuterol on airway responsiveness requires airway inflammation and is independent of \hat{l}^2 -receptor affinity in murine models of asthma. Respiratory Research, 2011, 12, 27.	3.6	23
75	Airway epithelial <scp>NF</scp> â€PB activation promotes the ability to overcome inhalational antigen tolerance. Clinical and Experimental Allergy, 2015, 45, 1245-1258.	2.9	23
76	Glutathione-S-transferase P promotes glycolysis in asthma in association with oxidation of pyruvate kinase M2. Redox Biology, 2021, 47, 102160.	9.0	23
77	Bacterial Lipoproteins Constitute the TLR2-Stimulating Activity of Serum Amyloid A. Journal of Immunology, 2018, 201, 2377-2384.	0.8	22
78	The glutaredoxin/S-glutathionylation axis regulates interleukin-17A-induced proinflammatory responses in lung epithelial cells in association with S-glutathionylation of nuclear factor κB family proteins. Free Radical Biology and Medicine, 2014, 73, 143-153.	2.9	21
79	Effects of acute and chronic low density lipoprotein exposure on neutrophil function. Pulmonary Pharmacology and Therapeutics, 2013, 26, 405-411.	2.6	19
80	A computational model of unresolved allergic inflammation in chronic asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L384-L390.	2.9	19
81	Serum Amyloid A3 is required for normal lung development and survival following influenza infection. Scientific Reports, 2018, 8, 16571.	3.3	19
82	The Endogenous Th17 Response in NO2-Promoted Allergic Airway Disease Is Dispensable for Airway Hyperresponsiveness and Distinct from Th17 Adoptive Transfer. PLoS ONE, 2013, 8, e74730.	2.5	19
83	Eosinophil peroxidase catalyzes JNK-mediated membrane blebbing in a Rho kinase-dependent manner. Journal of Leukocyte Biology, 2003, 74, 897-907.	3.3	18
84	Strain-dependent activation of NF-lºB in the airway epithelium and its role in allergic airway inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L57-L66.	2.9	18
85	Ablation of Glutaredoxin-1 Modulates House Dust Mite–Induced Allergic Airways Disease in Mice. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 377-386.	2.9	18
86	Measurement of oxidant-induced signal transduction proteins using cell imaging. Free Radical Biology and Medicine, 1999, 27, 1164-1172.	2.9	17
87	Therapeutic efficacy of IL-17A neutralization with corticosteroid treatment in a model of antigen-driven mixed-granulocytic asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 319, L693-L709.	2.9	17
88	Histamine H3 Receptor Integrates Peripheral Inflammatory Signals in the Neurogenic Control of Immune Responses and Autoimmune Disease Susceptibility. PLoS ONE, 2013, 8, e62743.	2.5	16
89	The Inflammatory Twitch as a General Strategy for Controlling the Host Response. Journal of Immunology, 2013, 190, 3510-3516.	0.8	15
90	Ablation of <i>Arg1</i> in hematopoietic cells improves respiratory function of lung parenchyma, but not that of larger airways or inflammation in asthmatic mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 305, L364-L376.	2.9	15

#	Article	IF	CITATIONS
91	Inflammasome Activity in Non-Microbial Lung Inflammation. Journal of Environmental Immunology and Toxicology, 2014, 1, 108-117.	1.1	15
92	<i>Slam</i> Haplotypes Modulate the Response to Lipopolysaccharide In Vivo through Control of NKT Cell Number and Function. Journal of Immunology, 2010, 185, 144-156.	0.8	14
93	Relationship between synovial fluid ARGSâ€aggrecan fragments, cytokines, MMPs, and TIMPs following acute ACL injury: A crossâ€sectional study. Journal of Orthopaedic Research, 2015, 33, 1796-1803.	2.3	14
94	Arginase 1 deletion in myeloid cells affects the inflammatory response in allergic asthma, but not lung mechanics, in female mice. BMC Pulmonary Medicine, 2017, 17, 158.	2.0	14
95	The Role of CD1d-Restricted NKT Cells in the Clearance of Pseudomonas aeruginosa from the Lung Is Dependent on the Host Genetic Background. Infection and Immunity, 2015, 83, 2557-2565.	2.2	13
96	Petrodiesel and waste grease biodiesel (B20) emission particles at a rural recycling center: characterization and effects on lung epithelial cells and macrophages. Air Quality, Atmosphere and Health, 2014, 7, 59-70.	3.3	11
97	Immunological characteristics and management considerations in obese patients with asthma. Expert Review of Clinical Immunology, 2015, 11, 793-803.	3.0	10
98	Obese adipose tissue modulates proinflammatory responses of mouse airway epithelial cells. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2021, 321, R79-R90.	1.8	10
99	Pharmacokinetics of omega-3 fatty acids in patients with severe sepsis compared with healthy volunteers: A prospective cohort study. Clinical Nutrition, 2020, 39, 958-965.	5.0	9
100	Dysregulation of Pyruvate Kinase M2 Promotes Inflammation in a Mouse Model of Obese Allergic Asthma. American Journal of Respiratory Cell and Molecular Biology, 2021, 64, 709-721.	2.9	9
101	The role of iNKT cells on the phenotypes of allergic airways in a mouse model. Pulmonary Pharmacology and Therapeutics, 2017, 45, 80-89.	2.6	8
102	Glutaredoxin deficiency promotes activation of the transforming growth factor beta pathway in airway epithelial cells, in association with fibrotic airway remodeling. Redox Biology, 2020, 37, 101720.	9.0	7
103	Macrophages augment the skeletal muscle proinflammatory response through TNFα following LPSâ€induced acute lung injury. FASEB Journal, 2021, 35, e21462.	0.5	7
104	Anti-Inflammatory Effects of Levalbuterol-Induced 11β-Hydroxysteroid Dehydrogenase Type 1 Activity in Airway Epithelial Cells. Frontiers in Endocrinology, 2015, 5, 236.	3.5	6
105	A Common Pathway to Obesity and Allergic Asthma. American Journal of Respiratory and Critical Care Medicine, 2015, 191, 721-722.	5.6	6
106	Inhalation of the reactive aldehyde acrolein promotes antigen sensitization to ovalbumin and enhances neutrophilic inflammation. Journal of Immunotoxicology, 2016, 13, 191-197.	1.7	6
107	Ablation of the Thiol Transferase Glutaredoxin-1 Augments Protein S-Glutathionylation and Modulates Type 2 Inflammatory Responses and IL-17 in a House Dust Mite Model of Allergic Airway Disease in Mice. Annals of the American Thoracic Society, 2016, 13 Suppl 1, S97.	3.2	6
108	Therapeutic ketosis decreases methacholine hyperresponsiveness in mouse models of inherent obese asthma. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2022, 322, L243-L257.	2.9	6

#	Article	IF	Citations
109	Hypoargininemia exacerbates airway hyperresponsiveness in a mouse model of asthma. Respiratory Research, 2018, 19, 98.	3.6	5
110	Macrophage-intrinsic DUOX1 contributes to type 2 inflammation and mucus metaplasia during allergic airway disease. Mucosal Immunology, 2022, 15, 977-989.	6.0	5
111	H1R expression by CD11B+ cells is not required for susceptibility to experimental allergic encephalomyelitis. Cellular Immunology, 2012, 278, 27-34.	3.0	4
112	Increased palmitate intake: higher acylcarnitine concentrations without impaired progression of \hat{l}^2 -oxidation. Journal of Lipid Research, 2015, 56, 1795-1807.	4.2	4
113	Debugging Obesity-related Airway Hyperresponsiveness by Modulating the Microbiome. American Journal of Respiratory Cell and Molecular Biology, 2019, 61, 665-666.	2.9	4
114	Functional significance of 8-isoprostanes in sinonasal disease and asthma. Respiratory Medicine, 2021, 185, 106506.	2.9	4
115	Do insights from mice imply that combined Th2 and Th17 therapies would benefit select severe asthma patients?. Annals of Translational Medicine, 2016, 4, 505-505.	1.7	4
116	Dissecting the inflammatory twitch in allergically inflamed mice. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1003-L1009.	2.9	3
117	Regulation of invariant NKT cell development and function by a 0.14 Mbp locus on chromosome 1: a possible role for Fcgr3. Genes and Immunity, 2019, 20, 261-272.	4.1	2
118	Storage conditions of highâ€fat diets affect pulmonary inflammation. Physiological Reports, 2021, 9, e15116.	1.7	2
119	Skeletal Muscle Myofibers Directly Contribute to LPS-Induced Systemic Inflammatory Tone. Frontiers in Pharmacology, $0,13,.$	3.5	2
120	Segmented Filamentous Bacteria Colonization Does Not Alter Responses to Allergic Airway Sensitization and Challenge. Annals of the American Thoracic Society, 2014, 11, \$78-\$79.	3.2	1
121	Reply: What About Neutrophils in Obese Asthma?. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 462-463.	2.9	1
122	Uricase Inhibits Nitrogen Dioxide–Promoted Allergic Sensitization to Inhaled Ovalbumin Independent of Uric Acid Catabolism. Journal of Immunology, 2016, 197, 1720-1732.	0.8	1
123	The Immunobiology of Asthma. , 2016, , 295-305.		1
124	Correction: Slam Haplotypes Modulate the Response to Lipopolysaccharide In Vivo through Control of NKT Cell Number and Function. Journal of Immunology, 2011, 187, 3450-3450.	0.8	0
125	Restoration of Immunocompetence in Aging and Other Inflammatory Disease States by Dehydroepiandrosterone-3ÅŸ-Sulfate, an Activator of the Peroxisome Proliferator-Activated Receptor Alpha (PPARÎ \pm). , 0, , .		0