
Hong Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602202/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Insulin Rescued MCP-1-Suppressed Cholesterol Efflux to Large HDL2 Particles via ABCA1, ABCG1, SR-BI and PI3K/Akt Activation in Adipocytes. Cardiovascular Drugs and Therapy, 2022, 36, 665-678.	2.6	2
2	Aorta in Pathologies May Function as an Immune Organ by Upregulating Secretomes for Immune and Vascular Cell Activation, Differentiation and Trans-Differentiation—Early Secretomes may Serve as Drivers for Trained Immunity. Frontiers in Immunology, 2022, 13, 858256.	4.8	10
3	Hsp90ÂS-nitrosylation at Cys521, as a conformational switch, modulates cycling of Hsp90-AHA1-CDC37 chaperone machine to aggravate atherosclerosis. Redox Biology, 2022, 52, 102290.	9.0	15
4	Chronic Exposure to the Combination of Cigarette Smoke and Morphine Decreases CD4+ Regulatory T Cell Numbers by Reprogramming the Treg Cell Transcriptome. Frontiers in Immunology, 2022, 13, 887681.	4.8	7
5	29 m6A-RNA Methylation (Epitranscriptomic) Regulators Are Regulated in 41 Diseases including Atherosclerosis and Tumors Potentially via ROS Regulation – 102 Transcriptomic Dataset Analyses. Journal of Immunology Research, 2022, 2022, 1-42.	2.2	19
6	Editorial: Highlights for Cardiovascular Therapeutics in 2021 – Trained Immunity, Immunometabolism, Gender Differences of Cardiovascular Diseases, and Novel Targets of Cardiovascular Therapeutics. Frontiers in Cardiovascular Medicine, 2022, 9, 892288.	2.4	1
7	Molecular basis and therapeutic implications of CD40/CD40L immune checkpoint. , 2021, 219, 107709.		89
8	Circular RNAs are a novel type of non-coding RNAs in ROS regulation, cardiovascular metabolic inflammations and cancers. , 2021, 220, 107715.		62
9	Uncoupling protein 2-mediated metabolic adaptations define cardiac cell function in the heart during transition from young to old age. Stem Cells Translational Medicine, 2021, 10, 144-156.	3.3	10
10	Ultrasound May Suppress Tumor Growth, Inhibit Inflammation, and Establish Tolerogenesis by Remodeling Innatome via Pathways of ROS, Immune Checkpoints, Cytokines, and Trained Immunity/Tolerance. Journal of Immunology Research, 2021, 2021, 1-33.	2.2	9
11	Immunological Feature and Transcriptional Signaling of Ly6C Monocyte Subsets From Transcriptome Analysis in Control and Hyperhomocysteinemic Mice. Frontiers in Immunology, 2021, 12, 632333.	4.8	11
12	Trained Immunity and Reactivity of Macrophages and Endothelial Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1032-1046.	2.4	56
13	Canonical Secretomes, Innate Immune Caspase-1-, 4/11-Gasdermin D Non-Canonical Secretomes and Exosomes May Contribute to Maintain Treg-Ness for Treg Immunosuppression, Tissue Repair and Modulate Anti-Tumor Immunity via ROS Pathways. Frontiers in Immunology, 2021, 12, 678201.	4.8	17
14	Endothelial Immunity Trained by Coronavirus Infections, DAMP Stimulations and Regulated by Anti-Oxidant NRF2 May Contribute to Inflammations, Myelopoiesis, COVID-19 Cytokine Storms and Thromboembolism. Frontiers in Immunology, 2021, 12, 653110.	4.8	43
15	Organelle Crosstalk Regulators Are Regulated in Diseases, Tumors, and Regulatory T Cells: Novel Classification of Organelle Crosstalk Regulators. Frontiers in Cardiovascular Medicine, 2021, 8, 713170.	2.4	11
16	Molecular processes mediating hyperhomocysteinemia-induced metabolic reprogramming, redox regulation and growth inhibition in endothelial cells. Redox Biology, 2021, 45, 102018.	9.0	16
17	Procaspase-1 patrolled to the nucleus of proatherogenic lipid LPC-activated human aortic endothelial cells induces ROS promoter CYP1B1 and strong inflammation. Redox Biology, 2021, 47, 102142.	9.0	16
18	IL-35 promotes CD4+Foxp3+ Tregs and inhibits atherosclerosis via maintaining CCR5-amplified Treg-suppressive mechanisms. JCI Insight, 2021, 6, .	5.0	26

#	Article	IF	CITATIONS
19	LIN28a induced metabolic and redox regulation promotes cardiac cell survival in the heart after ischemic injury. Redox Biology, 2021, 47, 102162.	9.0	10
20	Novel Knowledge-Based Transcriptomic Profiling of Lipid Lysophosphatidylinositol-Induced Endothelial Cell Activation. Frontiers in Cardiovascular Medicine, 2021, 8, 773473.	2.4	15
21	Hyperlipidemia May Synergize with Hypomethylation in Establishing Trained Immunity and Promoting Inflammation in NASH and NAFLD. Journal of Immunology Research, 2021, 2021, 1-35.	2.2	16
22	Adaptive Immune Response Signaling Is Suppressed in Ly6Chigh Monocyte but Upregulated in Monocyte Subsets of ApoE-/- Mice — Functional Implication in Atherosclerosis. Frontiers in Immunology, 2021, 12, 809208.	4.8	2
23	Homocysteine-methionine cycle is a metabolic sensor system controlling methylation-regulated pathological signaling. Redox Biology, 2020, 28, 101322.	9.0	63
24	Anti-inflammatory cytokines IL-35 and IL-10 block atherogenic lysophosphatidylcholine-induced, mitochondrial ROS-mediated innate immune activation, but spare innate immune memory signature in endothelial cells. Redox Biology, 2020, 28, 101373.	9.0	61
25	S-Nitrosylation of Plastin-3 Exacerbates Thoracic Aortic Dissection Formation via Endothelial Barrier Dysfunction. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 175-188.	2.4	42
26	SNO-MLP (S-Nitrosylation of Muscle LIM Protein) Facilitates Myocardial Hypertrophy Through TLR3 (Toll-Like Receptor 3)–Mediated RIP3 (Receptor-Interacting Protein Kinase 3) and NLRP3 (NOD-Like) Tj ETQq	0000.ngBT/	Ov er lock 10 ⁻
27	ROS systems are a new integrated network for sensing homeostasis and alarming stresses in organelle metabolic processes. Redox Biology, 2020, 37, 101696.	9.0	154
28	Innate-adaptive immunity interplay and redox regulation in immune response. Redox Biology, 2020, 37, 101759.	9.0	129
29	Metabolic Reprogramming in Immune Response and Tissue Inflammation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, 1990-2001.	2.4	53
30	Approaching Inflammation Paradoxes—Proinflammatory Cytokine Blockages Induce Inflammatory Regulators. Frontiers in Immunology, 2020, 11, 554301.	4.8	28
31	Liver Ischemia Reperfusion Injury, Enhanced by Trained Immunity, Is Attenuated in Caspase 1/Caspase 11 Double Gene Knockout Mice. Pathogens, 2020, 9, 879.	2.8	33
32	Interleukin 35 Delays Hindlimb Ischemia-Induced Angiogenesis Through Regulating ROS-Extracellular Matrix but Spares Later Regenerative Angiogenesis. Frontiers in Immunology, 2020, 11, 595813.	4.8	13
33	Vascular Endothelial Cells and Innate Immunity. Arteriosclerosis, Thrombosis, and Vascular Biology, 2020, 40, e138-e152.	2.4	191
34	Bone marrow deficiency of mRNA decaying protein Tristetraprolin increases inflammation and mitochondrial ROS but reduces hepatic lipoprotein production in LDLR knockout mice. Redox Biology, 2020, 37, 101609.	9.0	35
35	End-stage renal disease is different from chronic kidney disease in upregulating ROS-modulated proinflammatory secretome in PBMCs - A novel multiple-hit model for disease progression. Redox Biology, 2020, 34, 101460.	9.0	62
36	Tissue Treg Secretomes and Transcription Factors Shared With Stem Cells Contribute to a Treg Niche to Maintain Treg-Ness With 80% Innate Immune Pathways, and Functions of Immunosuppression and Tissue Repair. Frontiers in Immunology, 2020, 11, 632239.	4.8	29

#	Article	IF	CITATIONS
37	Biochemical basis and metabolic interplay of redox regulation. Redox Biology, 2019, 26, 101284.	9.0	170
38	Ly6C ⁺ Inflammatory Monocyte Differentiation Partially Mediates Hyperhomocysteinemia-Induced Vascular Dysfunction in Type 2 Diabetic db/db Mice. Arteriosclerosis, Thrombosis, and Vascular Biology, 2019, 39, 2097-2119.	2.4	61
39	Experimental Data-Mining Analyses Reveal New Roles of Low-Intensity Ultrasound in Differentiating Cell Death Regulatome in Cancer and Non-cancer Cells via Potential Modulation of Chromatin Long-Range Interactions. Frontiers in Oncology, 2019, 9, 600.	2.8	28
40	Increased acetylation of H3K14 in the genomic regions that encode trained immunity enzymes in lysophosphatidylcholine-activated human aortic endothelial cells – Novel qualification markers for chronic disease risk factors and conditional DAMPs. Redox Biology, 2019, 24, 101221.	9.0	64
41	HDL subclass proteomic analysis and functional implication of protein dynamic change during HDL maturation. Redox Biology, 2019, 24, 101222.	9.0	35
42	Increasing Upstream Chromatin Long–Range Interactions May Favor Induction of Circular RNAs in LysoPC-Activated Human Aortic Endothelial Cells. Frontiers in Physiology, 2019, 10, 433.	2.8	30
43	Twenty Novel Disease Group-Specific and 12 New Shared Macrophage Pathways in Eight Groups of 34 Diseases Including 24 Inflammatory Organ Diseases and 10 Types of Tumors. Frontiers in Immunology, 2019, 10, 2612.	4.8	50
44	Proton leak regulates mitochondrial reactive oxygen species generation in endothelial cell activation and inflammation - A novel concept. Archives of Biochemistry and Biophysics, 2019, 662, 68-74.	3.0	75
45	IL-35, as a newly proposed homeostasis-associated molecular pattern, plays three major functions including anti-inflammatory initiator, effector, and blocker in cardiovascular diseases. Cytokine, 2019, 122, 154076.	3.2	52
46	Co-signaling receptors regulate T-cell plasticity and immune tolerance. Frontiers in Bioscience - Landmark, 2019, 24, 96-132.	3.0	54
47	Hyperhomocysteinemia potentiates diabetes-impaired EDHF-induced vascular relaxation: Role of insufficient hydrogen sulfide. Redox Biology, 2018, 16, 215-225.	9.0	41
48	Identification of homocysteine-suppressive mitochondrial ETC complex genes and tissue expression profile – Novel hypothesis establishment. Redox Biology, 2018, 17, 70-88.	9.0	21
49	IL-35 (Interleukin-35) Suppresses Endothelial Cell Activation by Inhibiting Mitochondrial Reactive Oxygen Species-Mediated Site-Specific Acetylation of H3K14 (Histone 3 Lysine 14). Arteriosclerosis, Thrombosis, and Vascular Biology, 2018, 38, 599-609.	2.4	93
50	Lysophospholipids and Their Receptors Serve as Conditional DAMPs and DAMP Receptors in Tissue Oxidative and Inflammatory Injury. Antioxidants and Redox Signaling, 2018, 28, 973-986.	5.4	62
51	Increased Expression of Resistin in MicroRNA-155-Deficient White Adipose Tissues May Be a Possible Driver of Metabolically Healthy Obesity Transition to Classical Obesity. Frontiers in Physiology, 2018, 9, 1297.	2.8	61
52	Uremic toxins are conditional danger- or homeostasis-associated molecular patterns. Frontiers in Bioscience - Landmark, 2018, 23, 348-387.	3.0	45
53	Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. Journal of Biological Chemistry, 2018, 293, 11033-11045.	3.4	79
54	Immune cell subset differentiation and tissue inflammation. Journal of Hematology and Oncology, 2018, 11, 97.	17.0	116

4

#	Article	IF	CITATIONS
55	DNA Checkpoint and Repair Factors Are Nuclear Sensors for Intracellular Organelle Stresses—Inflammations and Cancers Can Have High Genomic Risks. Frontiers in Physiology, 2018, 9, 516.	2.8	18
56	GATA3, HDAC6, and BCL6 Regulate FOXP3+ Treg Plasticity and Determine Treg Conversion into Either Novel Antigen-Presenting Cell-Like Treg or Th1-Treg. Frontiers in Immunology, 2018, 9, 45.	4.8	85
57	Mitochondrial Proton Leak Plays a Critical Role in Pathogenesis of Cardiovascular Diseases. Advances in Experimental Medicine and Biology, 2017, 982, 359-370.	1.6	141
58	Analyses of caspase-1-regulated transcriptomes in various tissues lead to identification of novel IL-1β-, IL-18- and sirtuin-1-independent pathways. Journal of Hematology and Oncology, 2017, 10, 40.	17.0	64
59	Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Canadian Journal of Physiology and Pharmacology, 2017, 95, 247-252.	1.4	87
60	Thrombus leukocytes exhibit more endothelial cell-specific angiogenic markers than peripheral blood leukocytes do in acute coronary syndrome patients, suggesting a possibility of trans-differentiation: a comprehensive database mining study. Journal of Hematology and Oncology, 2017, 10, 74.	17.0	22
61	Elevated Homocysteine Concentrations Decrease the Antihypertensive Effect of Angiotensin-Converting Enzyme Inhibitors in Hypertensive Patients. Arteriosclerosis, Thrombosis, and Vascular Biology, 2017, 37, 166-172.	2.4	38
62	MicroRNA-155 Deficiency Leads to Decreased Atherosclerosis, Increased White Adipose Tissue Obesity, and Non-alcoholic Fatty Liver Disease. Journal of Biological Chemistry, 2017, 292, 1267-1287.	3.4	107
63	Low-Intensity Ultrasound-Induced Anti-inflammatory Effects Are Mediated by Several New Mechanisms Including Gene Induction, Immunosuppressor Cell Promotion, and Enhancement of Exosome Biogenesis and Docking. Frontiers in Physiology, 2017, 8, 818.	2.8	70
64	Metabolism-associated danger signal-induced immune response and reverse immune checkpoint-activated CD40+ monocyte differentiation. Journal of Hematology and Oncology, 2017, 10, 141.	17.0	45
65	A comprehensive data mining study shows that most nuclear receptors act as newly proposed homeostasis-associated molecular pattern receptors. Journal of Hematology and Oncology, 2017, 10, 168.	17.0	23
66	Endocytosis and membrane receptor internalization implication of F-BAR protein Carom. Frontiers in Bioscience - Landmark, 2017, 22, 1439-1457.	3.0	22
67	Analysis for Carom complex signaling and function by database mining. Frontiers in Bioscience - Landmark, 2016, 21, 856-872.	3.0	5
68	Caspase-1 mediates hyperlipidemia-weakened progenitor cell vessel repair. Frontiers in Bioscience - Landmark, 2016, 21, 178-191.	3.0	54
69	Lysophospholipids and their G protein-coupled receptors in atherosclerosis. Frontiers in Bioscience - Landmark, 2016, 21, 70-88.	3.0	68
70	Chronic Kidney Disease Induces Inflammatory CD40 ⁺ Monocyte Differentiation via Homocysteine Elevation and DNA Hypomethylation. Circulation Research, 2016, 119, 1226-1241.	4.5	88
71	Mitochondrial Reactive Oxygen Species Mediate Lysophosphatidylcholine-Induced Endothelial Cell Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2016, 36, 1090-1100.	2.4	187
72	CC-Chemokine Ligand 2 (CCL2) Suppresses High Density Lipoprotein (HDL) Internalization and Cholesterol Efflux via CC-Chemokine Receptor 2 (CCR2) Induction and p42/44 Mitogen-activated Protein Kinase (MAPK) Activation in Human Endothelial Cells. Journal of Biological Chemistry, 2016, 291, 19532-19544.	3.4	24

#	Article	IF	CITATIONS
73	Lysophospholipid Receptors, as Novel Conditional Danger Receptors and Homeostatic Receptors Modulate Inflammation—Novel Paradigm and Therapeutic Potential. Journal of Cardiovascular Translational Research, 2016, 9, 343-359.	2.4	71
74	Novel extracellular and nuclear caspase-1 and inflammasomes propagate inflammation and regulate gene expression: a comprehensive database mining study. Journal of Hematology and Oncology, 2016, 9, 122.	17.0	92
75	Hydrogen Sulfide Induces Keap1 S-sulfhydration and Suppresses Diabetes-Accelerated Atherosclerosis via Nrf2 Activation. Diabetes, 2016, 65, 3171-3184.	0.6	249
76	Caspase-1 Inflammasome Activation Mediates Homocysteine-Induced Pyrop-Apoptosis in Endothelial Cells. Circulation Research, 2016, 118, 1525-1539.	4.5	198
77	Interleukin-17A Promotes Aortic Endothelial Cell Activation via Transcriptionally and Post-translationally Activating p38 Mitogen-activated Protein Kinase (MAPK) Pathway. Journal of Biological Chemistry, 2016, 291, 4939-4954.	3.4	92
78	Caspase-1 Plays a Critical Role in Accelerating Chronic Kidney Disease-Promoted Neointimal Hyperplasia in the Carotid Artery. Journal of Cardiovascular Translational Research, 2016, 9, 135-144.	2.4	63
79	Metabolic Diseases Downregulate the Majority of Histone Modification Enzymes, Making a Few Upregulated Enzymes Novel Therapeutic Targets—"Sand Out and Gold Stays― Journal of Cardiovascular Translational Research, 2016, 9, 49-66.	2.4	53
80	Iptakalim attenuates hypoxia-induced pulmonary arterial hypertension in rats by endothelial function protection. Molecular Medicine Reports, 2015, 12, 2945-2952.	2.4	12
81	Hyperhomocysteinemia predicts renal function decline: a prospective study in hypertensive adults. Scientific Reports, 2015, 5, 16268.	3.3	66
82	F-BAR family proteins, emerging regulators for cell membrane dynamic changes—from structure to human diseases. Journal of Hematology and Oncology, 2015, 8, 47.	17.0	55
83	Chronic kidney disease alters vascular smooth muscle cell phenotype. Frontiers in Bioscience - Landmark, 2015, 20, 784-795.	3.0	72
84	Hyperhomocysteinemia suppresses bone marrow CD34 ⁺ /VEGF receptor 2 ⁺ cells and inhibits progenitor cell mobilization and homing to injured vasculature—a role of l²1â€integrin in progenitor cell migration and adhesion. FASEB Journal, 2015, 29, 3085-3099.	0.5	40
85	Endothelial progenitor cells in ischemic stroke: an exploration from hypothesis to therapy. Journal of Hematology and Oncology, 2015, 8, 33.	17.0	69
86	Pathological conditions re-shape physiological Tregs into pathological Tregs. Burns and Trauma, 2015, 3, .	4.9	74
87	Inhibition of Caspase-1 Activation in Endothelial Cells Improves Angiogenesis. Journal of Biological Chemistry, 2015, 290, 17485-17494.	3.4	105
88	Early Hyperlipidemia Promotes Endothelial Activation via a Caspase-1-Sirtuin 1 Pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 804-816.	2.4	197
89	Hyperhomocysteinemia and Hyperglycemia Induce and Potentiate Endothelial Dysfunction via μ-Calpain Activation. Diabetes, 2015, 64, 947-959.	0.6	66
90	Interleukin-35 Inhibits Endothelial Cell Activation by Suppressing MAPK-AP-1 Pathway. Journal of Biological Chemistry, 2015, 290, 19307-19318.	3.4	105

#	Article	IF	CITATIONS
91	Hyperhomocysteinemia Potentiates Hyperglycemia-Induced Inflammatory Monocyte Differentiation and Atherosclerosis. Diabetes, 2014, 63, 4275-4290.	0.6	104
92	Immunosuppressive/anti-inflammatory cytokines directly and indirectly inhibit endothelial dysfunction- a novel mechanism for maintaining vascular function. Journal of Hematology and Oncology, 2014, 7, 80.	17.0	127
93	Monocyte and macrophage differentiation: circulation inflammatory monocyte as biomarker for inflammatory diseases. Biomarker Research, 2014, 2, 1.	6.8	787
94	Targeting mitochondrial reactive oxygen species as novel therapy for inflammatory diseases and cancers. Journal of Hematology and Oncology, 2013, 6, 19.	17.0	594
95	An evolving new paradigm: endothelial cells – conditional innate immune cells. Journal of Hematology and Oncology, 2013, 6, 61.	17.0	350
96	Homocysteine induces inflammatory transcriptional signaling in monocytesÂ. Frontiers in Bioscience - Landmark, 2013, 18, 685.	3.0	36
97	Identification of Novel Pretranslational Regulatory Mechanisms for NF-ήB Activation. Journal of Biological Chemistry, 2013, 288, 15628-15640.	3.4	27
98	Regulatory T Cells and Atherosclerosis. Journal of Clinical & Experimental Cardiology, 2013, 01, 2.	0.0	57
99	Inflammasomes: sensors of metabolic stresses for vascular inflammationÂ. Frontiers in Bioscience - Landmark, 2013, 18, 638.	3.0	123
100	IL-35 Is a Novel Responsive Anti-inflammatory Cytokine — A New System of Categorizing Anti-inflammatory Cytokines. PLoS ONE, 2012, 7, e33628.	2.5	230
101	MicroRNAs and Toll-like Receptor/Interleukin-1 Receptor Signaling. Journal of Hematology and Oncology, 2012, 5, 66.	17.0	79
102	Endothelial progenitor cells in atherosclerosis. Frontiers in Bioscience - Landmark, 2012, 17, 2327.	3.0	115
103	Severe Hyperhomocysteinemia Promotes Bone Marrow–Derived and Resident Inflammatory Monocyte Differentiation and Atherosclerosis in LDLr/CBS-Deficient Mice. Circulation Research, 2012, 111, 37-49.	4.5	123
104	MicroRNAs and other mechanisms regulate interleukin-17 cytokines and receptors. Frontiers in Bioscience - Elite, 2012, E4, 1478.	1.8	15
105	Structural evidence of anti-atherogenic microRNAs. Frontiers in Bioscience - Landmark, 2011, 16, 3133.	3.0	23
106	Hyperhomocysteinemia impairs endothelium-derived hyperpolarizing factor–mediated vasorelaxation in transgenic cystathionine beta synthase–deficient mice. Blood, 2011, 118, 1998-2006.	1.4	64
107	Caspase-1 recognizes extended cleavage sites in its natural substrates. Atherosclerosis, 2010, 210, 422-429.	0.8	51
108	Regulation of homocysteine metabolism and methylation in human and mouse tissues. FASEB Journal, 2010. 24. 2804-2817.	0.5	153

Hong Wang

#	Article	IF	CITATIONS
109	Hyperhomocysteinemia Promotes Inflammatory Monocyte Generation and Accelerates Atherosclerosis in Transgenic Cystathionine β-Synthase–Deficient Mice. Circulation, 2009, 120, 1893-1902.	1.6	129
110	Expression of TCTP antisense in CD25high regulatory T cells aggravates cuff-injured vascular inflammation. Atherosclerosis, 2009, 203, 401-408.	0.8	85
111	Hyperhomocysteinemia and Endothelial Dysfunction. Current Hypertension Reviews, 2009, 5, 158-165.	0.9	90
112	Vascular inflammation and atherogenesis are activated via receptors for PAMPs and suppressed by regulatory T cells. Drug Discovery Today: Therapeutic Strategies, 2008, 5, 125-142.	0.5	108
113	Differential Regulation of Homocysteine Transport in Vascular Endothelial and Smooth Muscle Cells. Arteriosclerosis, Thrombosis, and Vascular Biology, 2007, 27, 1976-1983.	2.4	33
114	Hyperhomocysteinemia, DNA methylation and vascular disease. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1660-6.	2.3	70
115	Hyperhomocysteinemia and high-density lipoprotein metabolism in cardiovascular disease. Clinical Chemistry and Laboratory Medicine, 2007, 45, 1652-9.	2.3	40
116	Homocysteine inhibits endothelial cell growth via DNA hypomethylation of the cyclin Agene. Blood, 2007, 110, 3648-3655.	1.4	130
117	Hyperhomocysteinemia inhibits post-injury reendothelialization in mice. Cardiovascular Research, 2006, 69, 253-262.	3.8	60
118	Hyperhomocysteinemia Decreases Circulating High-Density Lipoprotein by Inhibiting Apolipoprotein A-I Protein Synthesis and Enhancing HDL Cholesterol Clearance. Circulation Research, 2006, 99, 598-606.	4.5	162
119	Hyperhomocystinemia Impairs Endothelial Function and eNOS Activity via PKC Activation. Arteriosclerosis, Thrombosis, and Vascular Biology, 2005, 25, 2515-2521.	2.4	141
120	Increased noncanonical splicing of autoantigen transcripts provides the structural basis for expression of untolerized epitopes. Journal of Allergy and Clinical Immunology, 2004, 114, 1463-1470.	2.9	126
121	Hyperhomocysteinemia accelerates atherosclerosis in cystathionine β-synthase and apolipoprotein E double knock-out mice with and without dietary perturbation. Blood, 2003, 101, 3901-3907.	1.4	172
122	Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood, 2002, 99, 939-945.	1.4	59
123	Cyclin A transcriptional suppression is the major mechanism mediating homocysteine-induced endothelial cell growth inhibition. Blood, 2002, 99, 939-45.	1.4	30
124	Homocysteine and Hypomethylation A Novel Link to Vascular Disease. Trends in Cardiovascular Medicine, 1999, 9, 49-54.	4.9	108
125	Inhibition of Growth and p21 Methylation in Vascular Endothelial Cells by Homocysteine but Not Cysteine. Journal of Biological Chemistry, 1997, 272, 25380-25385.	3.4	218