Geoffrey Brian Golding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6020410/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	Genomic inversions in <i>Escherichia coli</i> alter gene expression and are associated with nucleoid protein binding sites. Genome, 2022, 65, 287-299.	2.0	2
2	LANDMark: an ensemble approach to the supervised selection of biomarkers in high-throughput sequencing data. BMC Bioinformatics, 2022, 23, 110.	2.6	5
3	Low Complexity Regions in Mammalian Proteins are Associated with Low Protein Abundance and High Transcript Abundance. Molecular Biology and Evolution, 2022, 39, .	8.9	5
4	DELPHI: accurate deep ensemble model for protein interaction sites prediction. Bioinformatics, 2021, 37, 896-904.	4.1	63
5	Resampling the pool of genotypic possibilities: an adaptive function of sexual reproduction. Bmc Ecology and Evolution, 2021, 21, 119.	1.6	1
6	Probe design for simultaneous, targeted capture of diverse metagenomic targets. Cell Reports Methods, 2021, 1, 100069.	2.9	3
7	The Location of Substitutions and Bacterial Genome Arrangements. Genome Biology and Evolution, 2021, 13, .	2.5	2
8	The origins and genomic diversity of American Civil War Era smallpox vaccine strains. Genome Biology, 2020, 21, 175.	8.8	22
9	American mastodon mitochondrial genomes suggest multiple dispersal events in response to Pleistocene climate oscillations. Nature Communications, 2020, 11, 4048.	12.8	9
10	Coding and long non-coding RNAs provide evidence of distinct transcriptional reprogramming for two ecotypes of the extremophile plant Eutrema salsugineum undergoing water deficit stress. BMC Genomics, 2020, 21, 396.	2.8	9
11	The role of introgression and ecotypic parallelism in delineating intraspecific conservation units. Molecular Ecology, 2020, 29, 2793-2809.	3.9	31
12	Spatial Patterns of Gene Expression in Bacterial Genomes. Journal of Molecular Evolution, 2020, 88, 510-520.	1.8	16
13	Molecular Traits of Long Non-protein Coding RNAs from Diverse Plant Species Show Little Evidence of Phylogenetic Relationships. G3: Genes, Genomes, Genetics, 2019, 9, 2511-2520.	1.8	14
14	The Caribou (Rangifer tarandus) Genome. Genes, 2019, 10, 540.	2.4	24
15	Genetic resiliency and the Black Death: No apparent loss of mitogenomic diversity due to the Black Death in medieval London and Denmark. American Journal of Physical Anthropology, 2019, 169, 240-252.	2.1	15
16	Sex solves Haldane's dilemma. Genome, 2019, 62, 761-768.	2.0	3
17	Human-Specific Mutations and Positively Selected Sites in MARCO Confer Functional Changes. Molecular Biology and Evolution, 2018, 35, 440-450.	8.9	11
18	The advantage of recombination when selection is acting at many genetic Loci. Journal of Theoretical Biology, 2018, 442, 123-128.	1.7	15

#	Article	IF	CITATIONS
19	Inter-replicon Gene Flow Contributes to Transcriptional Integration in the <i>Sinorhizobium meliloti</i> Multipartite Genome. G3: Genes, Genomes, Genetics, 2018, 8, 1711-1720.	1.8	14
20	Divergent subgenome evolution after allopolyploidization in African clawed frogs (<i>Xenopus</i>). Journal of Evolutionary Biology, 2018, 31, 1945-1958.	1.7	13
21	Prediction of plant lncRNA by ensemble machine learning classifiers. BMC Genomics, 2018, 19, 316.	2.8	53
22	Shotgun metagenomic sequencing reveals freshwater beach sands as reservoir of bacterial pathogens. Water Research, 2017, 115, 360-369.	11.3	41
23	Genetic Discontinuity between the Maritime Archaic and Beothuk Populations in Newfoundland, Canada. Current Biology, 2017, 27, 3149-3156.e11.	3.9	17
24	A molecular portrait of maternal sepsis from Byzantine Troy. ELife, 2017, 6, .	6.0	46
25	markophylo: Markov chain analysis on phylogenetic trees. Bioinformatics, 2016, 32, 130-132.	4.1	3
26	Eighteenth century Yersinia pestis genomes reveal the long-term persistence of an historical plague focus. ELife, 2016, 5, e12994.	6.0	139
27	17th Century Variola Virus Reveals the Recent History of Smallpox. Current Biology, 2016, 26, 3407-3412.	3.9	197
28	A new way to contemplate Darwin's tangled bank: how DNA barcodes are reconnecting biodiversity science and biomonitoring. Philosophical Transactions of the Royal Society B: Biological Sciences, 2016, 371, 20150330.	4.0	67
29	Estimation of Gene Insertion/Deletion Rates with Missing Data. Genetics, 2016, 204, 513-529.	2.9	3
30	Ribosomal DNA and Plastid Markers Used to Sample Fungal and Plant Communities from Wetland Soils Reveals Complementary Biotas. PLoS ONE, 2016, 11, e0142759.	2.5	16
31	The Evolution of the Scavenger Receptor Cysteine-Rich Domain of the Class A Scavenger Receptors. Frontiers in Immunology, 2015, 6, 342.	4.8	31
32	Massively parallel multiplex DNA sequencing for specimen identification using an Illumina MiSeq platform. Scientific Reports, 2015, 5, 9687.	3.3	217
33	FuncPatch: a web server for the fast Bayesian inference of conserved functional patches in protein 3D structures. Bioinformatics, 2015, 31, 523-531.	4.1	20
34	Phylogenetic Gaussian Process Model for the Inference of Functionally Important Regions in Protein Tertiary Structures. PLoS Computational Biology, 2014, 10, e1003429.	3.2	21
35	Examination of Prokaryotic Multipartite Genome Evolution through Experimental Genome Reduction. PLoS Genetics, 2014, 10, e1004742.	3.5	89
36	Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 () Tj ETQqC) 0 0 rgBT / 4.8	Overlock 10 ⁻ 50

3

929-942.

#	Article	IF	CITATIONS
37	Increased Substitution Rates Surrounding Low-Complexity Regions within Primate Proteins. Genome Biology and Evolution, 2014, 6, 655-665.	2.5	21
38	RNA-Seq effectively monitors gene expression in Eutrema salsugineum plants growing in an extreme natural habitat and in controlled growth cabinet conditions. BMC Genomics, 2013, 14, 578.	2.8	40
39	A Guide to Bioinformatics for Immunologists. Frontiers in Immunology, 2013, 4, 416.	4.8	10
40	The effect of sampling from subdivided populations on species identification with DNA barcodes using a Bayesian statistical approach. Molecular Phylogenetics and Evolution, 2012, 65, 765-773.	2.7	35
41	Increased Polymorphism Near Low-Complexity Sequences across the Genomes of Plasmodium falciparum Isolates. Genome Biology and Evolution, 2011, 3, 539-550.	2.5	12
42	The LysR-type PcaQ protein regulates expression of a protocatechuate-inducible ABC-type transport system in Sinorhizobium meliloti. Microbiology (United Kingdom), 2011, 157, 2522-2533.	1.8	20
43	Assigning sequences to species in the absence of large interspecific differences. Molecular Phylogenetics and Evolution, 2010, 56, 187-194.	2.7	48
44	Genome-wide evidence for selection acting on single amino acid repeats. Genome Research, 2010, 20, 755-760.	5.5	35
45	Inferring Bacterial Genome Flux While Considering Truncated Genes. Genetics, 2010, 186, 411-426.	2.9	12
46	Low-complexity sequences and single amino acid repeats: not just "junk―peptide sequences. Genome, 2010, 53, 753-762.	2.0	62
47	Does Gene Translocation Accelerate the Evolution of Laterally Transferred Genes?. Genetics, 2009, 182, 1365-1375.	2.9	13
48	Uncovering rate variation of lateral gene transfer during bacterial genome evolution. BMC Genomics, 2008, 9, 235.	2.8	29
49	High rates of lateral gene transfer are not due to false diagnosis of gene absence. Gene, 2008, 421, 27-31.	2.2	7
50	Identification of Conflicting Selective Effects on Highly Expressed Genes. Evolutionary Bioinformatics, 2007, 3, 117693430700300.	1.2	2
51	A Step Toward Barcoding Life: A Model-Based, Decision-Theoretic Method to Assign Genes to Preexisting Species Groups. Systematic Biology, 2007, 56, 44-56.	5.6	79
52	fingerprint: visual depiction of variation in multiple sequence alignments. Molecular Ecology Notes, 2007, 7, 908-914.	1.7	16
53	Asymmetrical Evolution of Cytochrome bd Subunits. Journal of Molecular Evolution, 2006, 62, 132-142.	1.8	21
54	The fate of laterally transferred genes: Life in the fast lane to adaptation or death. Genome Research, 2006, 16, 636-643.	5.5	164

#	Article	IF	CITATIONS
55	Selection and Slippage Creating Serine Homopolymers. Molecular Biology and Evolution, 2006, 23, 2017-2025.	8.9	33
56	Transcriptional Profiling Implicates Novel Interactions between Abiotic Stress and Hormonal Responses in Thellungiella, a Close Relative of Arabidopsis. Plant Physiology, 2006, 140, 1437-1450.	4.8	227
57	Gene Gain and Gene Loss in Streptococcus: Is It Driven by Habitat?. Molecular Biology and Evolution, 2006, 23, 2379-2391.	8.9	78
58	An Integrated Approach to Functional Genomics: Construction of a Novel Reporter Gene Fusion Library for Sinorhizobium meliloti. Applied and Environmental Microbiology, 2006, 72, 7156-7167.	3.1	70
59	Population biology and bioinformatics. , 2004, , 94-103.		Ο
60	Neurological Proteins Are Not Enriched For Repetitive Sequences. Genetics, 2004, 166, 1141-1154.	2.9	12
61	A phylogenetic analysis of the pSymB replicon from the Sinorhizobium meliloti genome reveals a complex evolutionary history. Canadian Journal of Microbiology, 2003, 49, 269-280.	1.7	30
62	DNA and the revolutions of molecular evolution, computational biology, and bioinformatics. Genome, 2003, 46, 930-935.	2.0	5
63	Dinucleotide compositional analysis of Sinorhizobium meliloti using the genome signature: distinguishing chromosomes and plasmids. Functional and Integrative Genomics, 2002, 2, 274-281.	3.5	16
64	Simple sequences are rare in the Protein Data Bank. Proteins: Structure, Function and Bioinformatics, 2002, 48, 134-140.	2.6	84
65	Reconstructing the Prior Probabilities of Allelic Phylogenies. Genetics, 2002, 161, 889-896.	2.9	Ο
66	The Closest BLAST Hit Is Often Not the Nearest Neighbor. Journal of Molecular Evolution, 2001, 52, 540-542.	1.8	429
67	Evolution of Simple Sequence in Proteins. Journal of Molecular Evolution, 2000, 51, 131-140.	1.8	77
68	Substitution rate variation in closely related rodent species. Heredity, 1997, 78, 21-31.	2.6	7