
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/602024/publications.pdf Version: 2024-02-01

ROB & CRAIN

#	Article	IF	CITATIONS
1	The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Monthly Notices of the Royal Astronomical Society, 2015, 446, 521-554.	4.4	2,549
2	The EAGLE simulations of galaxy formation: calibration of subgrid physics and model variations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 1937-1961.	4.4	1,038
3	The APOSTLE simulations: solutions to the Local Group's cosmic puzzles. Monthly Notices of the Royal Astronomical Society, 2016, 457, 1931-1943.	4.4	453
4	The Aquila comparison project: the effects of feedback and numerical methods on simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1726-1749.	4.4	381
5	Evolution of galaxy stellar masses and star formation rates in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2015, 450, 4486-4504.	4.4	332
6	The unexpected diversity of dwarf galaxy rotation curves. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3650-3665.	4.4	302
7	Baryon effects on the internal structure of $\hat{\mathbf{b}}$ CDM haloes in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 451, 1247-1267.	4.4	302
8	Cosmological simulations of the formation of the stellar haloes around disc galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2802-2820.	4.4	232
9	The formation and assembly history of the Milky Way revealed by its globular cluster population. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3180-3202.	4.4	232
10	The impact of angular momentum on black hole accretion rates in simulations of galaxy formation. Monthly Notices of the Royal Astronomical Society, 2015, 454, 1038-1057.	4.4	219
11	Galaxiesïز1⁄2ïز1⁄2ïز1⁄2ïitergalactic medium interaction calculation ïز1⁄2ïز1⁄2ïز1⁄2ï. environment. Monthly Notices of the Royal Astronomical Society, 2009, 399, 1773-1794.	arge-scale	216
12	The origin of discs and spheroids in simulated galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 423, 1544-1555.	4.4	215
13	The dark nemesis of galaxy formation: why hot haloes trigger black hole growth and bring star formation to an end. Monthly Notices of the Royal Astronomical Society, 2017, 465, 32-44.	4.4	214
14	Colours and luminosities of <i>z</i> Â=Â0.1 galaxies in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2879-2896.	4.4	200
15	The eagle simulations of galaxy formation: the importance of the hydrodynamics scheme. Monthly Notices of the Royal Astronomical Society, 2015, 454, 2277-2291.	4.4	192
16	Molecular hydrogen abundances of galaxies in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2015, 452, 3815-3837.	4.4	182
17	The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 471, 1088-1106.	4.4	178
18	The E-MOSAICS project: simulating the formation and co-evolution of galaxies and their star cluster populations. Monthly Notices of the Royal Astronomical Society, 2018, 475, 4309-4346.	4.4	173

#	Article	IF	CITATIONS
19	Size evolution of normal and compact galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 722-738.	4.4	170
20	The Hydrangea simulations: galaxy formation in and around massive clusters. Monthly Notices of the Royal Astronomical Society, 2017, 470, 4186-4208.	4.4	167
21	Bent by baryons: the low-mass galaxy-halo relation. Monthly Notices of the Royal Astronomical Society, 2015, 448, 2941-2947.	4.4	163
22	Bimodality of low-redshift circumgalactic O vi in non-equilibrium eagle zoom simulations. Monthly Notices of the Royal Astronomical Society, 2016, 460, 2157-2179.	4.4	159
23	The apostle project: Local Group kinematic mass constraints and simulation candidate selection. Monthly Notices of the Royal Astronomical Society, 2016, 457, 844-856.	4.4	154
24	Optical colours and spectral indices of zÂ=Â0.1 eagle galaxies with the 3D dust radiative transfer code skirt. Monthly Notices of the Royal Astronomical Society, 2017, 470, 771-799.	4.4	152
25	Kraken reveals itself – the merger history of the Milky Way reconstructed with the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 2472-2491.	4.4	147
26	A chronicle of galaxy mass assembly in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 1659-1675.	4.4	145
27	The properties of the star-forming interstellar medium at <i>z</i> = 0.84-2.23 from HiZELS: mapping the internal dynamics and metallicity gradients in high-redshift disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 426, 935-950.	4.4	139
28	A fundamental problem in our understanding of low-mass galaxy evolution. Monthly Notices of the Royal Astronomical Society, 2012, 426, 2797-2812.	4.4	139
29	What shapes the galaxy mass function? Exploring the roles of supernova-driven winds and active galactic nuclei. Monthly Notices of the Royal Astronomical Society, 2012, 422, 2816-2840.	4.4	135
30	X-ray coronae in simulations of disc galaxy formation. Monthly Notices of the Royal Astronomical Society, 2010, 407, 1403-1422.	4.4	131
31	The abundance of (not just) dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2013, 431, 1366-1382.	4.4	130
32	The EAGLE simulations: atomic hydrogen associated with galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4204-4226.	4.4	130
33	Global structure and kinematics of stellar haloes in cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2012, 420, 2245-2262.	4.4	128
34	WALLABY – an SKA Pathfinder H i survey. Astrophysics and Space Science, 2020, 365, 1.	1.4	128
35	The distribution of neutral hydrogen around high-redshift galaxies and quasars in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2015, 452, 2034-2056.	4.4	124
36	The baryon fraction of ÂCDM haloes. Monthly Notices of the Royal Astronomical Society, 2007, 377, 41-49.	4.4	123

#	Article	IF	CITATIONS
37	Subhalo abundance matching and assembly bias in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3100-3118.	4.4	122
38	On the origin of cores in simulated galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2009, 395, 180-196.	4.4	117
39	The chosen few: the low-mass haloes that host faint galaxies. Monthly Notices of the Royal Astronomical Society, 2016, 456, 85-97.	4.4	117
40	The distribution of atomic hydrogen in eagle galaxies: morphologies, profiles, and H i holes. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1115-1136.	4.4	117
41	DYNAMO – I. A sample of Hα-luminous galaxies with resolved kinematics. Monthly Notices of the Royal Astronomical Society, 2014, 437, 1070-1095.	4.4	111
42	The alignment and shape of dark matter, stellar, and hot gas distributions in the EAGLE and cosmo-OWLS simulations. Monthly Notices of the Royal Astronomical Society, 2015, 453, 721-738.	4.4	108
43	Mismatch and misalignment: dark haloes and satellites of disc galaxies. Monthly Notices of the Royal Astronomical Society, 2011, 415, 2607-2625.	4.4	107
44	The case for AGN feedback in galaxy groups. Monthly Notices of the Royal Astronomical Society, 2010, , no-no.	4.4	105
45	It is not easy being green: the evolution of galaxy colour in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3925-3939.	4.4	104
46	Globular cluster formation and evolution in the context of cosmological galaxy assembly: open questions. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474, 20170616.	2.1	102
47	The origin of scatter in the stellar mass–halo mass relation of central galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2381-2396.	4.4	100
48	Mass-Discrepancy Acceleration Relation: A Natural Outcome of Galaxy Formation in Cold Dark Matter Halos. Physical Review Letters, 2017, 118, 161103.	7.8	95
49	The E-MOSAICS project: tracing galaxy formation and assembly with the age–metallicity distribution of globular clusters. Monthly Notices of the Royal Astronomical Society, 2019, 486, 3134-3179.	4.4	95
50	The quenching and morphological evolution of central galaxies is facilitated by the feedback-driven expulsion of circumgalactic gas. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4462-4480.	4.4	94
51	<i>Hubble Space Telescope</i> Hα imaging of star-forming galaxies at <i>z</i> â‰f 1–1.5: evolution in the size and luminosity of giant H <scp>ii</scp> regions. Monthly Notices of the Royal Astronomical Society, 2012, 427, 688-702.	4.4	92
52	The link between the assembly of the inner dark matter halo and the angular momentum evolution of galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2016, 460, 4466-4482.	4.4	86
53	Galaxies in the EAGLE hydrodynamical simulation and in the Durham and Munich semi-analytical models. Monthly Notices of the Royal Astronomical Society, 2016, 461, 3457-3482.	4.4	85
54	Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2016, 459, 310-332.	4.4	85

#	Article	IF	CITATIONS
55	The Fundamental Plane of star formation in galaxies revealed by the EAGLE hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2632-2650.	4.4	84
56	The effect of baryons on the inner density profiles of rich clusters. Monthly Notices of the Royal Astronomical Society, 2015, 452, 343-355.	4.4	80
57	The link between galaxy and black hole growth in the eagle simulation. Monthly Notices of the Royal Astronomical Society, 2017, 468, 3395-3407.	4.4	79
58	The environmental dependence of H i in galaxies in the eagle simulations. Monthly Notices of the Royal Astronomical Society, 2016, 461, 2630-2649.	4.4	77
59	The origin of diverse α-element abundances in galaxy discs. Monthly Notices of the Royal Astronomical Society, 2018, 477, 5072-5089.	4.4	77
60	The effect of baryons on redshift space distortions and cosmic density and velocity fields in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L11-L15.	3.3	75
61	Simulated Milky Way analogues: implications for dark matter direct searches. Journal of Cosmology and Astroparticle Physics, 2016, 2016, 024-024.	5.4	74
62	Galactic outflow rates in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 3971-3997.	4.4	73
63	Flickering AGN can explain the strong circumgalactic O <scp>vi</scp> observed by COS-Halos. Monthly Notices of the Royal Astronomical Society, 2018, 474, 4740-4755.	4.4	72
64	The relation between galaxy morphology and colour in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 472, L45-L49.	3.3	71
65	Galaxy cold gas contents in modern cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2020, 497, 146-166.	4.4	71
66	The low-mass end of the baryonic Tully–Fisher relation. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2419-2428.	4.4	69
67	The oldest and most metal-poor stars in the APOSTLE Local Group simulations. Monthly Notices of the Royal Astronomical Society, 2017, 465, 2212-2224.	4.4	67
68	Intrinsic alignments of galaxies in the EAGLE and cosmo-OWLS simulations. Monthly Notices of the Royal Astronomical Society, 2015, 454, 3328-3340.	4.4	66
69	Barred galaxies in the EAGLE cosmological hydrodynamical simulation. Monthly Notices of the Royal Astronomical Society, 2017, 469, 1054-1064.	4.4	66
70	The gas fractions of dark matter haloes hosting simulated â^1⁄4L⋆ galaxies are governed by the feedback history of their black holes. Monthly Notices of the Royal Astronomical Society, 2019, 485, 3783-3793.	4.4	66
71	The multiphase circumgalactic medium traced by low metal ions in EAGLE zoom simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 835-859.	4.4	64
72	A comparison of observed and simulated absorption from H <scp>i</scp> , CÂ <scp>iv</scp> , and SiÂ <scp>iv</scp> around <i>z</i> â‰^ 2 star-forming galaxies suggests redshift–space distortions a to inflows. Monthly Notices of the Royal Astronomical Society, 2017, 471, 690-705.	.e q a tet	62

#	Article	IF	CITATIONS
73	The diverse density profiles of galaxy clusters with self-interacting dark matter plus baryons. Monthly Notices of the Royal Astronomical Society: Letters, 2018, 476, L20-L24.	3.3	62
74	Data Release of UV to Submillimeter Broadband Fluxes for Simulated Galaxies from the EAGLE Project. Astrophysical Journal, Supplement Series, 2018, 234, 20.	7.7	60
75	The <scp>artemis</scp> simulations: stellar haloes of Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1765-1785.	4.4	60
76	The relationship between the morphology and kinematics of galaxies and its dependence on dark matter halo structure in EAGLE. Monthly Notices of the Royal Astronomical Society, 2019, 485, 972-987.	4.4	59
77	The rapid growth phase of supermassive black holes. Monthly Notices of the Royal Astronomical Society, 2018, 481, 3118-3128.	4.4	58
78	Formation histories of stars, clusters, and globular clusters in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 486, 5838-5852.	4.4	56
79	The environmental dependence of gas accretion on to galaxies: quenching satellites through starvation. Monthly Notices of the Royal Astronomical Society, 2017, 466, 3460-3471.	4.4	54
80	The Circum-Galactic Medium of Massive Spirals. II. Probing the Nature of Hot Gaseous Halo around the Most Massive Isolated Spiral Galaxies. Astrophysical Journal, Supplement Series, 2017, 233, 20.	7.7	52
81	Feedback from supermassive black holes transforms centrals into passive galaxies by ejecting circumgalactic gas. Monthly Notices of the Royal Astronomical Society, 2020, 491, 2939-2952.	4.4	51
82	Properties of Local Group galaxies in hydrodynamical simulations of sterile neutrino dark matter cosmologies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 4285-4298.	4.4	50
83	The nature of submillimetre and highly star-forming galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2440-2454.	4.4	50
84	Simulated Milky Way analogues: implications for dark matter indirect searches. Journal of Cosmology and Astroparticle Physics, 2015, 2015, 053-053.	5.4	49
85	The oxygen abundance gradients in the gas discs of galaxies in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2208-2221.	4.4	49
86	Alignments between galaxies, satellite systems and haloes. Monthly Notices of the Royal Astronomical Society, 2016, 460, 3772-3783.	4.4	47
87	An EAGLE's view of ex situ galaxy growth. Monthly Notices of the Royal Astronomical Society, 2020, 497, 81-93.	4.4	45
88	Rotation rates, sizes and star formation efficiencies of a representative population of simulated disc galaxies. Monthly Notices of the Royal Astronomical Society, 2012, 427, 379-392.	4.4	44
89	The origin of the α-enhancement of massive galaxies. Monthly Notices of the Royal Astronomical Society: Letters, 2016, 461, L102-L106.	3.3	44
90	Music from the heavens – gravitational waves from supermassive black hole mergers in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2016, 463, 870-885.	4.4	44

#	Article	IF	CITATIONS
91	The properties of â€~dark' ĥCDM haloes in the Local Group. Monthly Notices of the Royal Astronomical Society, 2017, 465, 3913-3926.	4.4	44
92	The formation of hot gaseous haloes around galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 473, 538-559.	4.4	44
93	Enriching the hot circumgalactic medium. Monthly Notices of the Royal Astronomical Society, 2013, 432, 3005-3024.	4.4	43
94	Size matters: abundance matching, galaxy sizes, and the Tully–Fisher relation in EAGLE. Monthly Notices of the Royal Astronomical Society, 2017, 464, 4736-4746.	4.4	43
95	The competition between confinement and ram pressure and its implications for galaxies in groups and clusters. Monthly Notices of the Royal Astronomical Society, 2012, 424, 1179-1186.	4.4	41
96	Baryon Budget of the Hot Circumgalactic Medium of Massive Spiral Galaxies. Astrophysical Journal Letters, 2018, 855, L24.	8.3	40
97	Recycled stellar ejecta as fuel for star formation and implications for the origin of the galaxy mass–metallicity relation. Monthly Notices of the Royal Astronomical Society, 2016, 456, 1235-1258.	4.4	38
98	Tidal dwarf galaxies in cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2018, 474, 580-596.	4.4	38
99	Dark matter annihilation radiation in hydrodynamic simulations of Milky Way haloes. Monthly Notices of the Royal Astronomical Society, 2016, 455, 4442-4451.	4.4	37
100	The origin of the enhanced metallicity of satellite galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 464, 508-529.	4.4	36
101	Dynamical cluster disruption and its implications for multiple population models in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2018, 481, 2851-2857.	4.4	36
102	Fossil stellar streams and their globular cluster populations in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2795-2806.	4.4	35
103	EAGLE and Illustris-TNG Predictions for Resolved eROSITA X-Ray Observations of the Circumgalactic Medium around Normal Galaxies. Astrophysical Journal Letters, 2020, 893, L24.	8.3	35
104	Winds of change: reionization by starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2017, 468, 2176-2188.	4.4	34
105	Galaxy properties and the cosmic web in simulations. Monthly Notices of the Royal Astronomical Society, 2015, 446, 1458-1468.	4.4	33
106	The origin of compact galaxies with anomalously high black hole masses. Monthly Notices of the Royal Astronomical Society, 2016, 460, 1147-1161.	4.4	33
107	The origin of the â€~blue tilt' of globular cluster populations in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2018, 480, 3279-3301.	4.4	33
108	The Cluster-EAGLE project: velocity bias and the velocity dispersion–mass relation of cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2018, 474, 3746-3759.	4.4	33

#	Article	IF	CITATIONS
109	The abundance and physical properties of O vii and O viii X-ray absorption systems in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2019, 488, 2947-2969.	4.4	33
110	The globular cluster system mass–halo mass relation in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1050-1061.	4.4	33
111	Young star cluster populations in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 490, 1714-1733.	4.4	31
112	Observations of metals in the <i>z</i> â‰^ 3.5 intergalactic medium and comparison to the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2016, 462, 2440-2464.	4.4	30
113	Metal-enriched halo gas across galaxy overdensities over the last 10 billion years. Monthly Notices of the Royal Astronomical Society, 2021, 508, 4573-4599.	4.4	30
114	On the galaxy–halo connection in the EAGLE simulation. Monthly Notices of the Royal Astronomical Society: Letters, 2017, 471, L11-L15.	3.3	29
115	Chandra survey of nearby highly inclined disc galaxies – III. Comparison with hydrodynamical simulations of circumgalactic coronae. Monthly Notices of the Royal Astronomical Society, 2014, 440, 859-869.	4.4	28
116	Evolution of the cold gas properties of simulated post-starburst galaxies. Monthly Notices of the Royal Astronomical Society, 2019, 484, 2447-2461.	4.4	28
117	The [α/Fe]–[Fe/H] relation in the E-MOSAICS simulations: its connection to the birth place of globular clusters and the fraction of globular cluster field stars in the bulge. Monthly Notices of the Royal Astronomical Society, 2020, 491, 4012-4022.	4.4	28
118	Where did the globular clusters of the Milky Way form? Insights from the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 495, 4248-4267.	4.4	27
119	Quasar Sightline and Galaxy Evolution (QSAGE) survey – I. The galaxy environment of OÂvi absorbers up to zÂ= 1.4 around PKS 0232â~'04. Monthly Notices of the Royal Astronomical Society, 2019, 486, 21-41.	4.4	26
120	The diverse evolutionary pathways of post-starburst galaxies. Nature Astronomy, 2019, 3, 440-446.	10.1	26
121	Predicting accreted satellite galaxy masses and accretion redshifts based on globular cluster orbits in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 499, 4863-4875.	4.4	25
122	SEAGLE – I. A pipeline for simulating and modelling strong lenses from cosmological hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4108-4125.	4.4	24
123	The kinematics of globular cluster populations in the E-MOSAICS simulations and their implications for the assembly history of the Milky Way. Monthly Notices of the Royal Astronomical Society, 2021, 503, 31-58.	4.4	22
124	The mass fraction of halo stars contributed by the disruption of globular clusters in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2020, 493, 3422-3428.	4.4	21
125	Galaxies at a redshift of â^1⁄40.5 around three closely spaced quasar sightlines. Monthly Notices of the Royal Astronomical Society, 2010, 402, 1273-1306.	4.4	20
126	BEING WISE II: REDUCING THE INFLUENCE OF STAR FORMATION HISTORY ON THE MASS-TO-LIGHT RATIO OF QUIESCENT GALAXIES. Astrophysical Journal, 2016, 832, 198.	4.5	19

#	Article	IF	CITATIONS
127	THE CIRCUM-GALACTIC MEDIUM OF MASSIVE SPIRALS. I. AN OVERVIEW AND A CASE STUDY OF NGC 5908. Astrophysical Journal, 2016, 830, 134.	4.5	18
128	Quenching and morphological evolution due to circumgalactic gas expulsion in a simulated galaxy with a controlled assembly history. Monthly Notices of the Royal Astronomical Society, 2020, 501, 236-253.	4.4	18
129	The Diversity of Assembly Histories Leading to Disc Galaxy Formation in a ĥCDM Model. Publications of the Astronomical Society of Australia, 2017, 34, .	3.4	15
130	Calibrated, cosmological hydrodynamical simulations with variable IMFs I: Method and effect on global galaxy scaling relations. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	15
131	The evolution of the UV luminosity function of globular clusters in the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2019, 487, 4550-4564.	4.4	15
132	A galaxy's accretion history unveiled from its integrated spectrum. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	15
133	Galaxy formation efficiency and the multiverse explanation of the cosmological constant with EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3727-3743.	4.4	14
134	Galaxies with monstrous black holes in galaxy cluster environments. Monthly Notices of the Royal Astronomical Society, 2019, 485, 396-407.	4.4	14
135	Galaxy mergers can initiate quenching by unlocking an AGN-driven transformation of the baryon cycle. Monthly Notices of the Royal Astronomical Society, 2022, 515, 1430-1443.	4.4	14
136	Calibrated, cosmological hydrodynamical simulations with variable IMFs III: spatially resolved properties and evolution. Monthly Notices of the Royal Astronomical Society, 2019, 483, 985-1002.	4.4	13
137	The evolution of the baryon fraction in haloes as a cause of scatter in the galaxy stellar mass in the <scp>eagle</scp> simulation. Monthly Notices of the Royal Astronomical Society, 2019, 482, 3261-3273.	4.4	13
138	The lensing properties of subhaloes in massive elliptical galaxies in sterile neutrino cosmologies. Monthly Notices of the Royal Astronomical Society, 2020, 491, 1295-1310.	4.4	13
139	The survival of globular clusters in a cuspy Fornax. Monthly Notices of the Royal Astronomical Society, 2021, 507, 2339-2353.	4.4	13
140	Linking globular cluster formation at low and high redshift through the age–metallicity relation in E-MOSAICS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 4768-4778.	4.4	13
141	Radial distributions of globular clusters trace their host dark matter halo: insights from the E-MOSAICS simulations. Monthly Notices of the Royal Astronomical Society, 2022, 513, 3925-3945.	4.4	13
142	OBSERVATIONAL LIMITS ON THE GAS MASS OF A <i>z</i> = 4.9 GALAXY. Astrophysical Journal Letters, 2012, 758, L35.	8.3	11
143	Quasar Sightline and Galaxy Evolution (QSAGE) survey – II. Galaxy overdensities around UV luminous quasars at <i>z</i> Â= 1–2. Monthly Notices of the Royal Astronomical Society, 2020, 497, 3083-3096.	4.4	11
144	The bahamas project: effects of a running scalar spectral index on large-scale structure. Monthly Notices of the Royal Astronomical Society, 2020, 493, 676-697.	4.4	11

ROB A CRAIN

#	Article	IF	CITATIONS
145	The impact of dark energy on galaxy formation. What does the future of our Universe hold?. Monthly Notices of the Royal Astronomical Society, 2018, 477, 3744-3759.	4.4	10
146	The SAMI Galaxy Survey: understanding observations of large-scale outflows at low redshift with EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2018, 473, 380-397.	4.4	9
147	The signal of decaying dark matter with hydrodynamical simulations. Monthly Notices of the Royal Astronomical Society, 2019, 485, 4071-4089.	4.4	9
148	Calibrated, cosmological hydrodynamical simulations with variable IMFs – II. Correlations between the IMF and global galaxy properties. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2515-2529.	4.4	9
149	The changing circumgalactic medium over the last 10ÂGyr – I. Physical and dynamical properties. Monthly Notices of the Royal Astronomical Society, 2020, 500, 1476-1490.	4.4	9
150	What to expect when using globular clusters as tracers of the total mass distribution in Milky Way-mass galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 502, 2828-2844.	4.4	6
151	The morphology of star-forming gas and its alignment with galaxies and dark matter haloes in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2021, 505, 65-87.	4.4	5
152	The physics governing the upper truncation mass of the globular cluster mass function. Monthly Notices of the Royal Astronomical Society, 2022, 510, 6190-6200.	4.4	4
153	The building blocks of the Milky Way halo using APOGEE and Gaia or Is the Galaxy a typical galaxy?. Proceedings of the International Astronomical Union, 2019, 14, 170-173.	0.0	3
154	Intrinsic alignments of the extended radio continuum emission of galaxies in the EAGLE simulations. Monthly Notices of the Royal Astronomical Society, 2022, 511, 3844-3862.	4.4	2
155	Predictions of hydrodynamic simulations for direct dark matter detection. Journal of Physics: Conference Series, 2016, 718, 042007.	0.4	1
156	The Fermi GeV excess: challenges for the dark matter interpretation. Journal of Physics: Conference Series, 2016, 718, 042010.	0.4	1
157	The global oxygen yield budget followed in hydrodynamic simulations. Proceedings of the International Astronomical Union, 2015, 11, 180-181.	0.0	0