
Guillaume Martinez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6019396/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Teratozoospermia: spotlight on the main genetic actors in the human. Human Reproduction Update, 2015, 21, 455-485.	10.8	255
2	Mutations in CFAP43 and CFAP44 cause male infertility and flagellum defects in Trypanosoma and human. Nature Communications, 2018, 9, 686.	12.8	173
3	Absence of Dpy19l2, a new inner nuclear membrane protein, causes globozoospermia in mice by preventing the anchoring of the acrosome to the nucleus. Development (Cambridge), 2012, 139, 2955-2965.	2.5	144
4	The genetic architecture of morphological abnormalities of the sperm tail. Human Genetics, 2021, 140, 21-42.	3.8	130
5	Absence of CFAP69 Causes Male Infertility due to Multiple Morphological Abnormalities of the Flagella in Human and Mouse. American Journal of Human Genetics, 2018, 102, 636-648.	6.2	121
6	Bi-allelic Mutations in ARMC2 Lead to Severe Astheno-Teratozoospermia Due to Sperm Flagellum Malformations in Humans and Mice. American Journal of Human Genetics, 2019, 104, 331-340.	6.2	113
7	Homozygous mutation of PLCZ1 leads to defective human oocyte activation and infertility that is not rescued by the WW-binding protein PAWP. Human Molecular Genetics, 2016, 25, 878-891.	2.9	112
8	<scp>SPINK</scp> 2 deficiency causes infertility by inducing sperm defects in heterozygotes and azoospermia inAhomozygotes. EMBO Molecular Medicine, 2017, 9, 1132-1149.	6.9	95
9	Whole-exome sequencing identifies mutations in FSIP2 as a recurrent cause of multiple morphological abnormalities of the sperm flagella. Human Reproduction, 2018, 33, 1973-1984.	0.9	93
10	Patients with multiple morphological abnormalities of the sperm flagella due to <i>DNAH1</i> mutations have a good prognosis following intracytoplasmic sperm injection. Human Reproduction, 2016, 31, 1164-1172.	0.9	85
11	Subcellular localization of phospholipase Cζ in human sperm and its absence in DPY19L2-deficient sperm are consistent with its role in oocyte activation. Molecular Human Reproduction, 2015, 21, 157-168.	2.8	83
12	A Homozygous Ancestral SVA-Insertion-Mediated Deletion in WDR66 Induces Multiple Morphological Abnormalities of the Sperm Flagellum and Male Infertility. American Journal of Human Genetics, 2018, 103, 400-412.	6.2	81
13	Dpy19l2-deficient globozoospermic sperm display altered genome packaging and DNA damage that compromises the initiation of embryo development. Molecular Human Reproduction, 2015, 21, 169-185.	2.8	61
14	<scp>PATL</scp> 2 is a key actor of oocyte maturation whose invalidation causes infertility in women and mice. EMBO Molecular Medicine, 2018, 10, .	6.9	53
15	CFAP70 mutations lead to male infertility due to severe astheno-teratozoospermia. A case report. Human Reproduction, 2019, 34, 2071-2079.	0.9	43
16	Biallelic variants in <i>MAATS1</i> encoding CFAP91, a calmodulin-associated and spoke-associated complex protein, cause severe astheno-teratozoospermia and male infertility. Journal of Medical Genetics, 2020, 57, 708-716.	3.2	43
17	Impact of Hodgkin or non-Hodgkin lymphoma and their treatments on sperm aneuploidy: a prospective study by the French CECOS network. Fertility and Sterility, 2017, 107, 341-350.e5.	1.0	42
18	Mutations of the aurora kinase C gene causing macrozoospermia are the most frequent genetic cause of male infertility in Algerian men. Asian Journal of Andrology, 2015, 17, 68.	1.6	37

Guillaume Martinez

#	Article	IF	CITATIONS
19	Genetics of teratozoospermia: Back to the head. Best Practice and Research in Clinical Endocrinology and Metabolism, 2020, 34, 101473.	4.7	32
20	Whole exome sequencing of men with multiple morphological abnormalities of the sperm flagella reveals novel homozygous <i>QRICH2</i> mutations. Clinical Genetics, 2019, 96, 394-401.	2.0	30
21	Progesterone-induced Acrosome Exocytosis Requires Sequential Involvement of Calcium-independent Phospholipase A2β (iPLA2β) and Group X Secreted Phospholipase A2 (sPLA2). Journal of Biological Chemistry, 2016, 291, 3076-3089.	3.4	25
22	Loss of the deglutamylase CCP5 perturbs multiple steps of spermatogenesis and leads to male infertility. Journal of Cell Science, 2019, 132, .	2.0	25
23	Genetic analyses of a large cohort of infertile patients with globozoospermia, DPY19L2 still the main actor, GGN confirmed as a guest player. Human Genetics, 2021, 140, 43-57.	3.8	24
24	Bi-allelic truncating variants in CFAP206 cause male infertility in human and mouse. Human Genetics, 2021, 140, 1367-1377.	3.8	23
25	Spermaurin, an La1-like peptide from the venom of the scorpionScorpio maurus palmatus, improves sperm motility and fertilization in different mammalian species. Molecular Human Reproduction, 2016, 23, 116-131.	2.8	18
26	Sexual selection and sperm diversity in primates. Molecular and Cellular Endocrinology, 2020, 518, 110974.	3.2	15
27	FISH and tips: a large scale analysis of automated versus manual scoring for sperm aneuploidy detection. Basic and Clinical Andrology, 2013, 23, 13.	1.9	14
28	Oligogenic heterozygous inheritance of sperm abnormalities in mouse. ELife, 2022, 11, .	6.0	12
29	Is sperm FISH analysis still useful for Robertsonian translocations? Meiotic analysis for 23 patients and review of the literature. Basic and Clinical Andrology, 2018, 28, 5.	1.9	11
30	Actiflagelin, a new sperm activator isolated from Walterinnesia aegyptia venom using phenotypic screening. Journal of Venomous Animals and Toxins Including Tropical Diseases, 2018, 24, 2.	1.4	11
31	Slo3 K+ channel blocker clofilium extends bull and mouse sperm-fertilizing competence. Reproduction, 2018, 156, 463-476.	2.6	7
32	Prokineticin 1 is a new biomarker of human oocyte competence: expression and hormonal regulation throughout late folliculogenesis. Biology of Reproduction, 2019, 101, 832-841.	2.7	6
33	Identification, Characterization and Synthesis of Walterospermin, a Sperm Motility Activator from the Egyptian Black Snake Walterinnesia aegyptia Venom. International Journal of Molecular Sciences, 2020, 21, 7786.	4.1	5
34	Ankrd31 in Sperm and Epididymal Integrity. Frontiers in Cell and Developmental Biology, 2021, 9, 741975.	3.7	4
35	Deslorelin acetate implant induces transient sterility and behavior changes in male olive baboon (<i>Papio anubis</i>): A case study. Journal of Medical Primatology, 2020, 49, 344-348.	0.6	2
36	Enzymatic activity of mouse group X-sPLA2 improves inÂvitro production of preimplantation bovine embryos. Theriogenology, 2019, 131, 113-122.	2.1	1

#	Article	IF	CITATIONS
37	New insights in Cercopithecinae spermatozoa. Zygote, 2021, 29, 401-409.	1.1	0

FISH and Chimps: Insights into Frequency and Distribution of Sperm Aneuploidy in Chimpanzees (Pan) Tj ETQq0 0 0 grgBT /Overlock 10 T

39	La reproduction des PNHÂ: du laboratoire à la conservation. Revue De Primatologie, 2015, , .	0.0	Ο
40	Collecte de sperme. Revue De Primatologie, 2015, , .	0.0	0