Shin-ichi Hisanaga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6019190/publications.pdf

Version: 2024-02-01

96 papers

3,879 citations

34 h-index 59 g-index

98 all docs 98 docs citations 98 times ranked 4300 citing authors

#	Article	IF	CITATIONS
1	Calpain-dependent Proteolytic Cleavage of the p35 Cyclin-dependent Kinase 5 Activator to p25. Journal of Biological Chemistry, 2000, 275, 17166-17172.	3.4	346
2	Physiological and pathological phosphorylation of tau by Cdk5. Frontiers in Molecular Neuroscience, 2014, 7, 65.	2.9	194
3	Cophosphorylation of amphiphysin I and dynamin I by Cdk5 regulates clathrin-mediated endocytosis of synaptic vesicles. Journal of Cell Biology, 2003, 163, 813-824.	5.2	182
4	Regulation of Mitochondrial Transport and Inter-Microtubule Spacing by Tau Phosphorylation at the Sites Hyperphosphorylated in Alzheimer's Disease. Journal of Neuroscience, 2012, 32, 2430-2441.	3 . 6	156
5	Propagation of pathological α-synuclein in marmoset brain. Acta Neuropathologica Communications, 2017, 5, 12.	5.2	142
6	Truncation of CDK5 Activator p35 Induces Intensive Phosphorylation of Ser202/Thr205 of Human Tau. Journal of Biological Chemistry, 2002, 277, 44525-44530.	3.4	131
7	Regulation and role of cyclinâ€dependent kinase activity in neuronal survival and death. Journal of Neurochemistry, 2010, 115, 1309-1321.	3.9	103
8	Myristoylation of p39 and p35 is a determinant of cytoplasmic or nuclear localization of active cyclineâ€dependent kinase 5 complexes. Journal of Neurochemistry, 2008, 106, 1325-1336.	3.9	101
9	In vivo regulation of glycogen synthase kinase $3\hat{l}^2$ activity in neurons and brains. Scientific Reports, 2017, 7, 8602.	3.3	90
10	Impairment of hippocampal long-term depression and defective spatial learning and memory in p35-/mice. Journal of Neurochemistry, 2005, 94, 917-925.	3.9	89
11	The Regulation of Cyclin-Dependent Kinase 5 Activity through the Metabolism of p35 or p39 Cdk5 Activator. NeuroSignals, 2003, 12, 221-229.	0.9	85
12	Phosphorylation of Protein Phosphatase Inhibitor-1 by Cdk5. Journal of Biological Chemistry, 2001, 276, 14490-14497.	3.4	83
13	Developmental Regulation of the Proteolysis of the p35 Cyclin-Dependent Kinase 5 Activator by Phosphorylation. Journal of Neuroscience, 2003, 23, 1189-1197.	3.6	83
14	Phospho-Tau Bar Code: Analysis of Phosphoisotypes of Tau and Its Application to Tauopathy. Frontiers in Neuroscience, 2018, 12, 44.	2.8	82
15	Tau Phosphorylation by Cyclin-dependent Kinase 5/p39 during Brain Development Reduces Its Affinity for Microtubules. Journal of Biological Chemistry, 2003, 278, 10506-10515.	3.4	78
16	Control of cyclin-dependent kinase 5 (Cdk5) activity by glutamatergic regulation of p35 stability. Journal of Neurochemistry, 2005, 93, 502-512.	3.9	78
17	Phosphorylation States of Microtubule-Associated Protein 2 (MAP2) Determine the Regulatory Role of MAP2 in Microtubule Dynamicsâ€. Biochemistry, 1997, 36, 12574-12582.	2.5	75
18	Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin. Journal of Cell Science, 2007, 120, 4355-4366.	2.0	74

#	Article	IF	Citations
19	Suppression of Calpain-dependent Cleavage of the CDK5 Activator p35 to p25 by Site-specific Phosphorylation. Journal of Biological Chemistry, 2007, 282, 1687-1694.	3.4	65
20	LMTK1/AATYK1 Is a Novel Regulator of Axonal Outgrowth That Acts via Rab11 in a Cdk5-Dependent Manner. Journal of Neuroscience, 2012, 32, 6587-6599.	3.6	58
21	p25/Cyclin-dependent kinase 5 promotes the progression of cell death in nucleus of endoplasmic reticulum-stressed neurons. Journal of Neurochemistry, 2007, 102, 133-140.	3.9	54
22	Quantitative Measurement of in Vivo Phosphorylation States of Cdk5 Activator p35 by Phos-tag SDS-PAGE. Molecular and Cellular Proteomics, 2010, 9, 1133-1143.	3.8	53
23	Isomerase Pin1 Stimulates Dephosphorylation of Tau Protein at Cyclin-dependent Kinase (Cdk5)-dependent Alzheimer Phosphorylation Sites. Journal of Biological Chemistry, 2013, 288, 7968-7977.	3.4	52
24	Phosphorylation of Drebrin by Cyclin-Dependent Kinase 5 and Its Role in Neuronal Migration. PLoS ONE, 2014, 9, e92291.	2.5	51
25	Membrane Association Facilitates Degradation and Cleavage of the Cyclin-Dependent Kinase 5 Activators p35 and p39. Biochemistry, 2010, 49, 5482-5493.	2.5	48
26	In situ dephosphorylation of tau by protein phosphatase 2A and 2B in fetal rat primary cultured neurons. FEBS Letters, 1995, 376, 238-242.	2.8	47
27	\hat{l} ±-synuclein strains that cause distinct pathologies differentially inhibit proteasome. ELife, 2020, 9, .	6.0	45
28	Cdk5 Regulation of the GRAB-Mediated Rab8-Rab11 Cascade in Axon Outgrowth. Journal of Neuroscience, 2017, 37, 790-806.	3.6	43
29	Porcine brain neurofilamentâ€H tail domain kinase: Its identification as cdk5/p26 complex and comparison with cdc2/cyclin B kinase. Cytoskeleton, 1995, 31, 283-297.	4.4	42
30	Suppression of Mutant Huntingtin Aggregate Formation by Cdk5/p35 through the Effect on Microtubule Stability. Journal of Neuroscience, 2008, 28, 8747-8755.	3.6	41
31	Phosphorylation of Adult Type Sept5 (CDCrel-1) by Cyclin-dependent Kinase 5 Inhibits Interaction with Syntaxin-1. Journal of Biological Chemistry, 2007, 282, 7869-7876.	3.4	38
32	Okadaic Acid-Stimulated Degradation of p35, an Activator of CDK5, by Proteasome in Cultured Neurons. Biochemical and Biophysical Research Communications, 1998, 252, 775-778.	2.1	37
33	Phosphorylation of FTDP-17 Mutant tau by Cyclin-dependent Kinase 5 Complexed with p35, p25, or p39. Journal of Biological Chemistry, 2005, 280, 31522-31529.	3.4	37
34	Phosphorylation of Cyclin-dependent Kinase 5 (Cdk5) at Tyr-15 Is Inhibited by Cdk5 Activators and Does Not Contribute to the Activation of Cdk5. Journal of Biological Chemistry, 2014, 289, 19627-19636.	3.4	37
35	Isoform-independent and -dependent phosphorylation of microtubule-associated protein tau in mouse brain during postnatal development. Journal of Biological Chemistry, 2018, 293, 1781-1793.	3.4	36
36	Cdk5 phosphorylation of its activators p35 and p39 determines subcellular location of the holokinase in a phosphorylation site-specific manner. Journal of Cell Science, 2012, 125, 3421-9.	2.0	34

#	Article	IF	Citations
37	Cyclin I is involved in the regulation of cell cycle progression. Cell Cycle, 2013, 12, 2617-2624.	2.6	34
38	Enhanced activation of Ca2+/Calmodulin-dependent protein kinase II upon downregulation of cyclin-dependent kinase 5-p35. Journal of Neuroscience Research, 2006, 84, 747-754.	2.9	33
39	Tau phosphorylation at Alzheimer's disease-related Ser356 contributes to tau stabilization when PAR-1/MARK activity is elevated. Biochemical and Biophysical Research Communications, 2016, 478, 929-934.	2.1	33
40	In Vivo and in Vitro Phosphorylation at Ser-493 in the Glutamate (E)-segment of Neurofilament-H Subunit by Glycogen Synthase Kinase $3\hat{1}^2$. Journal of Biological Chemistry, 2002, 277, 36032-36039.	3.4	32
41	Cdk5-p39 is a labile complex with the similar substrate specificity to Cdk5-p35. Journal of Neurochemistry, 2007, 102, 1477-1487.	3.9	31
42	Small molecule inhibitor of type I transforming growth factor- \hat{l}^2 receptor kinase ameliorates the inhibitory milieu in injured brain and promotes regeneration of nigrostriatal dopaminergic axons. Journal of Neuroscience Research, 2011, 89, 381-393.	2.9	31
43	LMTK1 regulates dendritic formation by regulating movement of Rab11A-positive endosomes. Molecular Biology of the Cell, 2014, 25, 1755-1768.	2.1	31
44	Excess APP <i>O</i> -glycosylation by GalNAc-T6 decreases $\hat{Al^2}$ production. Journal of Biochemistry, 2017, 161, 99-111.	1.7	31
45	Activation of latent cyclin-dependent kinase 5 (Cdk5)-p35 complexes by membrane dissociation. Journal of Neurochemistry, 2005, 94, 1535-1545.	3.9	30
46	Calpastatin, an endogenous calpain-inhibitor protein, regulates the cleavage of the Cdk5 activator p35 to p25. Journal of Neurochemistry, 2011, 117, 504-515.	3.9	30
47	Ca2+/calmodulin-dependent protein kinase II promotes neurodegeneration caused by tau phosphorylated at Ser262/356 in a transgenic Drosophila model of tauopathy. Journal of Biochemistry, 2017, 162, 335-342.	1.7	29
48	CD2-associated protein (CD2AP) overexpression accelerates amyloid precursor protein (APP) transfer from early endosomes to the lysosomal degradation pathway. Journal of Biological Chemistry, 2019, 294, 10886-10899.	3.4	28
49	Phosphorylation of Myristoylated Alanine-Rich C Kinase Substrate (MARCKS) by Proline-Directed Protein Kinases and Its Dephosphorylation. Journal of Neurochemistry, 2002, 65, 802-809.	3.9	27
50	Commitment of 1-Methyl-4-phenylpyrinidinium Ion-induced Neuronal Cell Death by Proteasome-mediated Degradation of p35 Cyclin-dependent Kinase 5 Activator. Journal of Biological Chemistry, 2009, 284, 26029-26039.	3.4	27
51	Tau isoform expression and phosphorylation in marmoset brains. Journal of Biological Chemistry, 2019, 294, 11433-11444.	3.4	27
52	Cytoplasmic control of Rab family small <scp>GTP</scp> ases through <scp>BAG</scp> 6. EMBO Reports, 2019, 20, .	4.5	26
53	Apoptosis-associated tyrosine kinase is a Cdk5 activator p35 binding protein. Biochemical and Biophysical Research Communications, 2003, 310, 398-404.	2.1	25
54	Effect of Pin1 or Microtubule Binding on Dephosphorylation of FTDP-17 Mutant Tau. Journal of Biological Chemistry, 2009, 284, 16840-16847.	3.4	22

#	Article	IF	Citations
55	Quantitative and combinatory determination of in situ phosphorylation of tau and its FTDP-17 mutants. Scientific Reports, 2016, 6, 33479.	3.3	21
56	The Abundance of Nonphosphorylated Tau in Mouse and Human Tauopathy Brains Revealed by the Use of Phos-Tag Method. American Journal of Pathology, 2016, 186, 398-409.	3.8	20
57	Palmitoylationâ€dependent endosomal localization of AATYK1A and its interaction with Src. Genes To Cells, 2008, 13, 949-964.	1.2	19
58	The LMTK1-TBC1D9B-Rab11A Cascade Regulates Dendritic Spine Formation via Endosome Trafficking. Journal of Neuroscience, 2019, 39, 9491-9502.	3.6	19
59	Phosphorylation of AATYK1 by Cdk5 Suppresses Its Tyrosine Phosphorylation. PLoS ONE, 2010, 5, e10260.	2.5	18
60	Regulation of the interaction of Disabledâ€1 with CIN85 by phosphorylation with Cyclinâ€dependent kinase 5. Genes To Cells, 2007, 12, 1315-1327.	1.2	17
61	AATYK1A phosphorylation by Cdk5 regulates the recycling endosome pathway. Genes To Cells, 2010, 15, 783-797.	1.2	17
62	Protein Kinase Cî¶ Regulates Cdk5/p25 Signaling during Myogenesis. Molecular Biology of the Cell, 2010, 21, 1423-1434.	2.1	17
63	Two Degradation Pathways of the p35 Cdk5 (Cyclin-dependent Kinase) Activation Subunit, Dependent and Independent of Ubiquitination. Journal of Biological Chemistry, 2016, 291, 4649-4657.	3.4	17
64	Distinct phosphorylation profiles of tau in brains of patients with different tauopathies. Neurobiology of Aging, 2021, 108, 72-79.	3.1	17
65	Neurofilaments of aged rats: The strengthened interneurofilament interaction and the reduced amount of NF-M. Journal of Neuroscience Research, 1999, 58, 337-348.	2.9	14
66	Regulation of membrane association and kinase activity of Cdk5–p35 by phosphorylation of p35. Journal of Neuroscience Research, 2007, 85, 3071-3078.	2.9	14
67	Cyclin-dependent kinase 5 phosphorylates and induces the degradation of ataxin-2. Neuroscience Letters, 2014, 563, 112-117.	2.1	14
68	Two Types of Apoptotic Cell Death of Rat Central Nervous System-Derived Neuroblastoma B50 and B104 Cells: Apoptosis Induced During Proliferation and After Differentiation. Journal of Neurochemistry, 2002, 67, 1856-1865.	3.9	11
69	Neuronal expression of two isoforms of mouse Septin 5. Journal of Neuroscience Research, 2010, 88, 1309-1316.	2.9	11
70	Dab1â€mediated colocalization of multiâ€adaptor protein <scp><scp>CIN85</scp></scp> with Reelin receptors, <scp>A</scp> po <scp>ER</scp> 2 and <scp>VLDLR</scp> , in neurons. Genes To Cells, 2013, 18, 410-424.	1.2	10
71	Structural Basis for the Different Stability and Activity between the Cdk5 Complexes with p35 and p39 Activators. Journal of Biological Chemistry, 2013, 288, 32433-32439.	3.4	10
72	Valproic acid downregulates Cdk5 activity via the transcription of the p35 mRNA. Biochemical and Biophysical Research Communications, 2014, 447, 678-682.	2.1	8

#	Article	IF	Citations
73	Kinase activity of endosomal kinase <scp>LMTK</scp> 1A regulates its cellular localization and interactions with cytoskeletons. Genes To Cells, 2016, 21, 1080-1094.	1.2	8
74	LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Frontiers in Molecular Neuroscience, 2020, 13, 112.	2.9	8
75	The effect of Cyclinâ€dependent kinase 5 on voltageâ€dependent calcium channels in <scp>PC</scp> 12 cells varies according to channel type and cell differentiation state. Journal of Neurochemistry, 2014, 130, 498-506.	3.9	7
76	Preferential targeting of p39-activated Cdk5 to Rac1-induced lamellipodia. Molecular and Cellular Neurosciences, 2014, 61, 34-45.	2,2	7
77	S6K/p70S6K1 protects against tau-mediated neurodegeneration by decreasing the level of tau phosphorylated at Ser262 in a Drosophila model of tauopathy. Neurobiology of Aging, 2018, 71, 255-264.	3.1	6
78	Hyperactive and impulsive behaviors of LMTK1 knockout mice. Scientific Reports, 2020, 10, 15461.	3.3	6
79	Cdk5 Regulation of the GRAB-Mediated Rab8-Rab11 Cascade in Axon Outgrowth. Journal of Neuroscience, 2017, 37, 790-806.	3.6	6
80	Cdk5-induced neuronal cell death: The activation of the conventional Rb-E2F G ₁ pathway in post-mitotic neurons. Cell Cycle, 2012, 11, 2049-2049.	2.6	5
81	In vivo analysis of the phosphorylation of tau and the tau protein kinases Cdk5-p35 and GSK3β by using Phos-tag SDS–PAGE. Journal of Proteomics, 2022, 262, 104591.	2.4	5
82	Activation of ATPase activity of 14S dynein from Tetrahymena cilia by microtubules. FEBS Journal, 1992, 206, 911-917.	0.2	4
83	Cyclin-dependent kinase 5 promotes proteasomal degradation of the 5-HT1A receptor via phosphorylation. Biochemical and Biophysical Research Communications, 2019, 510, 370-375.	2.1	4
84	Lemur tail kinase 1 (LMTK1) regulates the endosomal localization of \hat{l}^2 -secretase BACE1. Journal of Biochemistry, 2021, 170, 729-738.	1.7	4
85	The Kinase Activity of Cdk5 and Its Regulation. , 2008, , 171-190.		3
86	Novel axonal distribution of neurofilamentâ€H phosphorylated at the glycogen synthase kinase 3βâ€phosphorylation site in its Eâ€segment. Journal of Neuroscience Research, 2009, 87, 3088-3097.	2.9	3
87	Isoform-dependent subcellular localization of LMTK1A and LMTK1B and their roles in axon outgrowth and spine formation. Journal of Biochemistry, 2020, 168, 23-32.	1.7	3
88	Cdk5-mediated JIP1 phosphorylation regulates axonal outgrowth through Notch1 inhibition. BMC Biology, 2022, 20, 115.	3.8	3
89	Effects of p35 Mutations Associated with Mental Retardation on the Cellular Function of p35-CDK5. PLoS ONE, 2015, 10, e0140821.	2.5	2
90	Map7D2 and Map7D1 facilitate microtubule stabilization through distinct mechanisms in neuronal cells. Life Science Alliance, 2022, 5, e202201390.	2.8	2

#	Article	IF	CITATIONS
91	Cyclin-Dependent Kinase 5 (Cdk5): Preparation and Measurement of Kinase Activity. Neuromethods, 2012, , 87-103.	0.3	1
92	Valproic Acid-Induced Anxiety and Depression Behaviors are Ameliorated in p39 Cdk5 Activator-Deficient Mice. Neurochemical Research, 0, , .	3.3	1
93	6. Molecular mechanisms of neural stem cells differentiation. , 2019, , 127-144.		O
94	Quantitative analysis of in vivo phosphorylation of Cyclin-dependent kinase activator p35 by Phos-tag SDS-PAGE/immunoblotting. Seibutsu Butsuri Kagaku, 2012, 56, s9-s13.	0.1	0
95	Ultrastructure of Detergent-Resistant Cytoskeletons in the Noncortical Domain of Sea Urchin Eggs as Revealed by the Quick-Freeze Deep-Etch Technique Cell Structure and Function, 1992, 17, 277-285.	1.1	0
96	Phosphorylation analysis of tau in neurodegenerative diseases by Phos-tag SDS-PAGE. Denki Eido, 2015, 59, 73-75.	0.0	0