Nils Arne Sörensen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6018710/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. New England Journal of Medicine, 2019, 380, 2529-2540.	13.9	230
2	Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome. JAMA - Journal of the American Medical Association, 2017, 318, 1913.	3.8	188
3	Diagnosis of Myocardial Infarction Using a High-Sensitivity Troponin I 1-Hour Algorithm. JAMA Cardiology, 2016, 1, 397.	3.0	186
4	Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 620-632.	1.2	147
5	High-sensitivity assays for troponin in patients with cardiac disease. Nature Reviews Cardiology, 2017, 14, 472-483.	6.1	144
6	Increased afterload induces pathological cardiac hypertrophy: a new in vitro model. Basic Research in Cardiology, 2012, 107, 307.	2.5	131
7	Machine Learning to Predict the Likelihood of Acute Myocardial Infarction. Circulation, 2019, 140, 899-909.	1.6	128
8	Application of the SCAI classification in a cohort of patients with cardiogenic shock. Catheterization and Cardiovascular Interventions, 2020, 96, E213-E219.	0.7	122
9	Discrimination of patients with type 2 myocardial infarction. European Heart Journal, 2017, 38, 3514-3520.	1.0	96
10	Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury. Circulation Research, 2019, 125, 328-340.	2.0	86
11	Impact of age on the performance of the ESC 0/1h-algorithms for early diagnosis of myocardial infarction. European Heart Journal, 2018, 39, 3780-3794.	1.0	78
12	Immediate Rule-Out of Acute Myocardial Infarction Using Electrocardiogram and Baseline High-Sensitivity Troponin I. Clinical Chemistry, 2017, 63, 394-402.	1.5	57
13	Diagnostic Evaluation of a High-Sensitivity Troponin I Point-of-Care Assay. Clinical Chemistry, 2019, 65, 1592-1601.	1.5	56
14	Temporal trends in incidence and outcome of acute coronary syndrome. Clinical Research in Cardiology, 2020, 109, 1186-1192.	1.5	54
15	Clinical application of the 4th Universal Definition of Myocardial Infarction. European Heart Journal, 2020, 41, 2209-2216.	1.0	54
16	Clinical chemistry score versus high-sensitivity cardiac troponin I and T tests alone to identify patients at low or high risk for myocardial infarction or death at presentation to the emergency department. Cmaj, 2018, 190, E974-E984.	0.9	38
17	Performance of the European Society of Cardiology 0/1-Hour, 0/2-Hour, and 0/3-Hour Algorithms for Rapid Triage of Acute Myocardial Infarction. Annals of Internal Medicine, 2022, 175, 101-113.	2.0	37
18	Early diagnosis of acute myocardial infarction using high-sensitivity troponin I. PLoS ONE, 2017, 12, e0174288.	1.1	29

Nils Arne Sörensen

#	Article	IF	CITATIONS
19	Relations of Sex to Diagnosis and Outcomes in Acute Coronary Syndrome. Journal of the American Heart Association, 2018, 7, .	1.6	28
20	Challenging the 99th percentile: A lower troponin cutoff leads to low mortality of chest pain patients. International Journal of Cardiology, 2017, 232, 289-293.	0.8	27
21	A Biomarker Model to Distinguish Types of Myocardial Infarction and Injury. Journal of the American College of Cardiology, 2021, 78, 781-790.	1.2	25
22	Right bundle branch block in patients with suspected myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2019, 8, 161-166.	0.4	20
23	Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. International Journal of Cardiology, 2019, 283, 35-40.	0.8	19
24	Performance of the ESC 0/1-h and 0/3-h Algorithm for the Rapid Identification of Myocardial Infarction Without ST-Elevation in Patients With Diabetes. Diabetes Care, 2020, 43, 460-467.	4.3	18
25	High-sensitivity troponin and novel biomarkers for the early diagnosis of non-ST-segment elevation myocardial infarction in patients with atrial fibrillation. European Heart Journal: Acute Cardiovascular Care, 2016, 5, 419-427.	0.4	14
26	Cardiovascular Biomarkers in Hypertensive Patients with Medical Treatment—Results from the Randomized TEAMSTA Protect I Trial. Clinical Chemistry, 2017, 63, 1877-1885.	1.5	12
27	Prognostic Value of a Novel and Established High-Sensitivity Troponin I Assay in Patients Presenting with Suspected Myocardial Infarction. Biomolecules, 2019, 9, 469.	1.8	12
28	Derivation and External Validation of a Highâ€Sensitivity Cardiac Troponin–Based Proteomic Model to Predict the Presence of Obstructive Coronary Artery Disease. Journal of the American Heart Association, 2020, 9, e017221.	1.6	12
29	Atrial Fibrillation Manifestations Risk Factors and Sex Differences in a Population-Based Cohort (From the Gutenberg Health Study). American Journal of Cardiology, 2018, 122, 76-82.	0.7	10
30	Predictive value of soluble urokinase-type plasminogen activator receptor for mortality in patients with suspected myocardial infarction. Clinical Research in Cardiology, 2019, 108, 1386-1393.	1.5	10
31	Predictive Value of Serial ECGs in Patients with Suspected Myocardial Infarction. Journal of Clinical Medicine, 2020, 9, 2303.	1.0	10
32	Sex-Specific Outcomes in Patients with Acute Coronary Syndrome. Journal of Clinical Medicine, 2020, 9, 2124.	1.0	10
33	Diagnostic Validation of a High-Sensitivity Cardiac Troponin I Assay. Clinical Chemistry, 2021, 67, 1230-1239.	1.5	10
34	Diagnostic Value of Soluble Urokinase-Type Plasminogen Activator Receptor in Addition to High-Sensitivity Troponin I in Early Diagnosis of Acute Myocardial Infarction. Biomolecules, 2019, 9, 108.	1.8	8
35	The association of anaemia and high-sensitivity cardiac troponin and its effect on diagnosing myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2021, , .	0.4	7
36	Application of a machine learning-driven, multibiomarker panel for prediction of incident cardiovascular events in patients with suspected myocardial infarction. Biomarkers in Medicine, 2020, 14, 775-784.	0.6	5

Nils Arne Sörensen

#	Article	IF	CITATIONS
37	Prognostic Implications of a Second Peak of High-Sensitivity Troponin T After Myocardial Infarction. Frontiers in Cardiovascular Medicine, 2021, 8, 780198.	1.1	4
38	Biomarkers in the triage of chest pain: are we making progress?. Biomarkers in Medicine, 2016, 10, 345-347.	0.6	3
39	Differences in measurement of high-sensitivity troponin in an on-demand and batch-wise setting. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 302-309.	0.4	3
40	Association of late gadolinium enhancement with biomarkers in patients with myocardial infarction. Coronary Artery Disease, 2021, Publish Ahead of Print, 730-732.	0.3	0
41	Application of the Fourth Universal Definition of MI Using FDA-Recommended Sex-Specific Troponin Cutoff Concentrations. Journal of the American College of Cardiology, 2021, 77, 2346-2348.	1.2	0