## Susan L Andersen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6018646/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                        | lF   | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Trajectories of brain development: point of vulnerability or window of opportunity?. Neuroscience<br>and Biobehavioral Reviews, 2003, 27, 3-18.                                                                                | 6.1  | 1,292     |
| 2  | The neurobiological consequences of early stress and childhood maltreatment. Neuroscience and Biobehavioral Reviews, 2003, 27, 33-44.                                                                                          | 6.1  | 1,193     |
| 3  | Stress, sensitive periods and maturational events in adolescent depression. Trends in Neurosciences, 2008, 31, 183-191.                                                                                                        | 8.6  | 794       |
| 4  | Preliminary Evidence for Sensitive Periods in the Effect of Childhood Sexual Abuse on Regional Brain<br>Development. Journal of Neuropsychiatry and Clinical Neurosciences, 2008, 20, 292-301.                                 | 1.8  | 574       |
| 5  | Developmental neurobiology of childhood stress and trauma. Psychiatric Clinics of North America, 2002, 25, 397-426.                                                                                                            | 1.3  | 481       |
| 6  | Evidence for dopamine receptor pruning between adolescence and adulthood in striatum but not nucleus accumbens. Developmental Brain Research, 1995, 89, 167-172.                                                               | 1.7  | 436       |
| 7  | Dopamine receptor pruning in prefrontal cortex during the periadolescent period in rats. Synapse, 2000, 37, 167-169.                                                                                                           | 1.2  | 418       |
| 8  | Childhood neglect is associated with reduced corpus callosum area. Biological Psychiatry, 2004, 56, 80-85.                                                                                                                     | 1.3  | 407       |
| 9  | Neurobiological Consequences of Early Stress and Childhood Maltreatment: Are Results from Human and Animal Studies Comparable?. Annals of the New York Academy of Sciences, 2006, 1071, 313-323.                               | 3.8  | 319       |
| 10 | Sex differences in dopamine receptor overproduction and elimination. NeuroReport, 1997, 8, 1495-1497.                                                                                                                          | 1.2  | 296       |
| 11 | Developmental trajectories during adolescence in males and females: A cross-species understanding of underlying brain changes. Neuroscience and Biobehavioral Reviews, 2011, 35, 1687-1703.                                    | 6.1  | 290       |
| 12 | Desperately driven and no brakes: Developmental stress exposure and subsequent risk for substance abuse. Neuroscience and Biobehavioral Reviews, 2009, 33, 516-524.                                                            | 6.1  | 287       |
| 13 | Delayed Effects of Early Stress on Hippocampal Development. Neuropsychopharmacology, 2004, 29,<br>1988-1993.                                                                                                                   | 5.4  | 275       |
| 14 | Altered responsiveness to cocaine in rats exposed to methylphenidate during development. Nature<br>Neuroscience, 2002, 5, 13-14.                                                                                               | 14.8 | 251       |
| 15 | Transient D <sub>1</sub> Dopamine Receptor Expression on Prefrontal Cortex Projection Neurons:<br>Relationship to Enhanced Motivational Salience of Drug Cues in Adolescence. Journal of<br>Neuroscience, 2008, 28, 2375-2382. | 3.6  | 249       |
| 16 | Sensitive periods of substance abuse: Early risk for the transition to dependence. Developmental<br>Cognitive Neuroscience, 2017, 25, 29-44.                                                                                   | 4.0  | 246       |
| 17 | Enduring behavioral effects of early exposure to methylphenidate in rats. Biological Psychiatry, 2003, 54, 1330-1337.                                                                                                          | 1.3  | 225       |
| 18 | Neurobiology of the development of motivated behaviors in adolescence: A window into a neural systems model. Pharmacology Biochemistry and Behavior, 2009, 93, 199-211.                                                        | 2.9  | 208       |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Is adolescence a sensitive period for depression? Behavioral and neuroanatomical findings from a social stress model. Synapse, 2008, 62, 22-30.                                                        | 1.2 | 174       |
| 20 | Stimulants and the developing brain. Trends in Pharmacological Sciences, 2005, 26, 237-243.                                                                                                            | 8.7 | 155       |
| 21 | Delayed extinction and stronger reinstatement of cocaine conditioned place preference in adolescent rats, compared to adults Behavioral Neuroscience, 2008, 122, 460-465.                              | 1.2 | 137       |
| 22 | Pubertal changes in gonadal hormones do not underlie adolescent dopamine receptor overproduction. Psychoneuroendocrinology, 2002, 27, 683-691.                                                         | 2.7 | 126       |
| 23 | Altering the course of neurodevelopment: a framework for understanding the enduring effects of psychotropic drugs. International Journal of Developmental Neuroscience, 2004, 22, 423-440.             | 1.6 | 114       |
| 24 | Nonsteroidal Anti-Inflammatory Treatment Prevents Delayed Effects of Early Life Stress in Rats.<br>Biological Psychiatry, 2011, 70, 434-440.                                                           | 1.3 | 109       |
| 25 | Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Development and Psychopathology, 2015, 27, 477-491.                            | 2.3 | 99        |
| 26 | Regulation of Working Memory by Dopamine D4 Receptor in Rats. Neuropsychopharmacology, 2004, 29,<br>1648-1655.                                                                                         | 5.4 | 98        |
| 27 | Serotonin laterality in amygdala predicts performance in the elevated plus maze in rats. NeuroReport, 1999, 10, 3497-3500.                                                                             | 1.2 | 89        |
| 28 | Mapping dopamine D2/D3 receptor function using pharmacological magnetic resonance imaging.<br>Psychopharmacology, 2005, 180, 705-715.                                                                  | 3.1 | 84        |
| 29 | Early developmental exposure to methylphenidate reduces cocaine-induced potentiation of brain stimulation reward in rats. Biological Psychiatry, 2005, 57, 120-125.                                    | 1.3 | 81        |
| 30 | Depressive-Like Behavior in Adolescents after Maternal Separation: Sex Differences, Controllability, and GABA. Developmental Neuroscience, 2012, 34, 210-217.                                          | 2.0 | 81        |
| 31 | Length of Time Between Onset of Childhood Sexual Abuse and Emergence of Depression in a Young<br>Adult Sample. Journal of Clinical Psychiatry, 2009, 70, 684-691.                                      | 2.2 | 80        |
| 32 | The enduring effects of an adolescent social stressor on synaptic density, part II: Poststress reversal of synaptic loss in the cortex by adinazolam and MKâ€801. Synapse, 2008, 62, 185-192.          | 1.2 | 78        |
| 33 | The Ontogeny of Apomorphine-Induced Alterations of Neostriatal Dopamine Release: Effects on Spontaneous Release. Journal of Neurochemistry, 1993, 61, 2247-2255.                                       | 3.9 | 74        |
| 34 | Changes in the second messenger cyclic AMP during development may underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD). Behavioural Brain Research, 2002, 130, 197-201.        | 2.2 | 73        |
| 35 | Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats:<br>Relationship to cortical NMDA receptor expression. Brain, Behavior, and Immunity, 2013, 28, 218-226. | 4.1 | 72        |
| 36 | Experience during adolescence shapes brain development: From synapses and networks to normal and pathological behavior. Neurotoxicology and Teratology, 2019, 76, 106834.                              | 2.4 | 66        |

| #  | Article                                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Early Life Adversity Alters the Developmental Profiles of Addiction-Related Prefrontal Cortex<br>Circuitry. Brain Sciences, 2013, 3, 143-158.                                                                                                                               | 2.3 | 61        |
| 38 | A Novel, Multiple Symptom Model of Obsessive-Compulsive-Like Behaviors in Animals. Biological<br>Psychiatry, 2010, 68, 741-747.                                                                                                                                             | 1.3 | 57        |
| 39 | Pharmacologic Neuroimaging of the Ontogeny of Dopamine Receptor Function. Developmental<br>Neuroscience, 2010, 32, 125-138.                                                                                                                                                 | 2.0 | 55        |
| 40 | Viral over-expression of D1 dopamine receptors in the prefrontal cortex increase high-risk behaviors in adults: Comparison with adolescents. Psychopharmacology, 2014, 231, 1615-1626.                                                                                      | 3.1 | 55        |
| 41 | Reducing substance use during adolescence: a translational framework for prevention.<br>Psychopharmacology, 2014, 231, 1437-1453.                                                                                                                                           | 3.1 | 53        |
| 42 | Maturational increases inc-fos expression in the ascending dopamine systems. Synapse, 2001, 41, 345-350.                                                                                                                                                                    | 1.2 | 52        |
| 43 | Abnormal behavioral and neurotrophic development in the younger sibling receiving less maternal care in a communal nursing paradigm in rats. Psychoneuroendocrinology, 2010, 35, 392-402.                                                                                   | 2.7 | 52        |
| 44 | Stress, sensitive periods, and substance abuse. Neurobiology of Stress, 2019, 10, 100140.                                                                                                                                                                                   | 4.0 | 47        |
| 45 | Juvenile methylphenidate reduces prefrontal cortex plasticity via D3 receptor and BDNF in adulthood.<br>Frontiers in Synaptic Neuroscience, 2014, 6, 1.                                                                                                                     | 2.5 | 46        |
| 46 | Juvenile methylphenidate modulates rewardâ€related behaviors and cerebral blood flow by decreasing cortical D3 receptors. European Journal of Neuroscience, 2008, 27, 2962-2972.                                                                                            | 2.6 | 43        |
| 47 | Differences in behavior and monoamine laterality following neonatal clomipramine treatment.<br>Developmental Psychobiology, 2002, 41, 50-57.                                                                                                                                | 1.6 | 38        |
| 48 | Rate Dependency Revisited: Understanding the Effects of Methylphenidate in Children with Attention<br>Deficit Hyperactivity Disorder. Journal of Child and Adolescent Psychopharmacology, 2003, 13, 41-51.                                                                  | 1.3 | 37        |
| 49 | Degree of neuronal activation following FG-7142 changes across regions during development.<br>Developmental Brain Research, 1999, 116, 201-203.                                                                                                                             | 1.7 | 36        |
| 50 | Annual Research Review: New frontiers in developmental neuropharmacology: can longâ€ŧerm<br>therapeutic effects of drugs be optimized through carefully timed early intervention?. Journal of<br>Child Psychology and Psychiatry and Allied Disciplines, 2011, 52, 476-503. | 5.2 | 35        |
| 51 | The developmental interâ€relationships between activity, novelty preferences, and delay discounting in male and female rats. Developmental Psychobiology, 2016, 58, 231-242.                                                                                                | 1.6 | 33        |
| 52 | Early life stress and later peer distress on depressive behavior in adolescent female rats: Effects of a novel intervention on GABA and D2 receptors. Behavioural Brain Research, 2017, 330, 37-45.                                                                         | 2.2 | 33        |
| 53 | Determination of hemispheric emotional valence in individual subjects: A new approach with research and therapeutic implications. Behavioral and Brain Functions, 2007, 3, 13.                                                                                              | 3.3 | 32        |
| 54 | Commentary on the special issue on the adolescent brain: Adolescence, trajectories, and the importance of prevention. Neuroscience and Biobehavioral Reviews, 2016, 70, 329-333.                                                                                            | 6.1 | 26        |

| #  | Article                                                                                                                                                                                                | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Sex differences in the ontogeny of CRF receptors during adolescent development in the dorsal raphe nucleus and ventral tegmental area. Synapse, 2016, 70, 125-132.                                     | 1.2 | 25        |
| 56 | When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacology, 2016, 233, 1191-1201.                                         | 3.1 | 24        |
| 57 | The development of D2 autoreceptor-mediated modulation of K+-evoked dopamine release in the neostriatum. Developmental Brain Research, 1994, 78, 123-130.                                              | 1.7 | 23        |
| 58 | Developmental emergence of an obsessive-compulsive phenotype and binge behavior in rats.<br>Psychopharmacology, 2015, 232, 3173-3181.                                                                  | 3.1 | 23        |
| 59 | Juvenile Methylphenidate Exposure and Factors That Influence Incentive Processing. Developmental Neuroscience, 2009, 31, 95-106.                                                                       | 2.0 | 22        |
| 60 | Sex-dependent changes in ADHD-like behaviors in juvenile rats following cortical dopamine depletion.<br>Behavioural Brain Research, 2014, 270, 357-363.                                                | 2.2 | 21        |
| 61 | Neuroinflammation, Early-Life Adversity, and Brain Development. Harvard Review of Psychiatry, 2022, 30, 24-39.                                                                                         | 2.1 | 19        |
| 62 | This is your teen brain on drugs: In search of biological factors unique to dependence toxicity in adolescence. Neurotoxicology and Teratology, 2020, 81, 106916.                                      | 2.4 | 17        |
| 63 | Calcium Dependency and Tetrodotoxin Sensitivity of Neostriatal Dopamine Release in 5â€Dayâ€Old and<br>Adult Rats as Measured by In Vivo Microdialysis. Journal of Neurochemistry, 1994, 62, 1741-1749. | 3.9 | 15        |
| 64 | Juvenile exposure to methylphenidate and guanfacine in rats: effects on early delay discounting and later cocaine-taking behavior. Psychopharmacology, 2019, 236, 685-698.                             | 3.1 | 13        |
| 65 | The ontogeny of apomorphine-induced alterations of neostriatal dopamine release: Effects on potassium-evoked release. Neurochemical Research, 1994, 19, 339-345.                                       | 3.3 | 12        |
| 66 | The developing prefrontal cortex: Is there a transient interneuron that stimulates catecholamine terminals?. , 1998, 29, 89-91.                                                                        |     | 12        |
| 67 | Sluggish cognitive tempo and exposure to interpersonal trauma in children. Anxiety, Stress and Coping, 2020, 33, 100-114.                                                                              | 2.9 | 12        |
| 68 | Effects of (â^')-Sulpiride on Dopamine Release in Striatum of Developing Rats: Degree of Depolarization<br>Influences Responsiveness. Journal of Neurochemistry, 2002, 67, 1931-1937.                  | 3.9 | 11        |
| 69 | Extinction and reinstatement to cocaine-associated cues in male and female juvenile rats and the role of D1 dopamine receptor. Neuropharmacology, 2015, 95, 22-28.                                     | 4.1 | 11        |
| 70 | Working memory and salivary brainâ€derived neurotrophic factor as developmental predictors of cocaine seeking in male and female rats. Addiction Biology, 2018, 23, 868-879.                           | 2.6 | 11        |
| 71 | Cocaine-conditioned odor cues without chronic exposure: Implications for the development of addiction vulnerability. NeuroImage: Clinical, 2015, 8, 652-659.                                           | 2.7 | 10        |
| 72 | Anhedonic behavior and γ-amino butyric acid during a sensitive period in female rats exposed to early adversity. Journal of Psychiatric Research, 2018, 100, 8-15.                                     | 3.1 | 9         |

| #  | Article                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Development of an affordable hi-resolution activity monitor system for laboratory animals.<br>Pharmacology Biochemistry and Behavior, 1996, 54, 479-483.                                                                         | 2.9 | 8         |
| 74 | Preventative treatment in an animal model of ADHD: Behavioral and biochemical effects of<br>methylphenidate and its interactions with ovarian hormones in female rats. European<br>Neuropsychopharmacology, 2016, 26, 1496-1506. | 0.7 | 8         |
| 75 | Progressive accumbens degeneration after neonatal striatal 6-hydroxydopamine in rats. Neuroscience<br>Letters, 1998, 247, 99-102.                                                                                                | 2.1 | 6         |
| 76 | Reply to: Animal Models of Obsessive-Compulsive Disorder. Biological Psychiatry, 2011, 69, e31-e32.                                                                                                                              | 1.3 | 5         |
| 77 | The use of laser capture microdissection to identify specific pathways and mechanisms involved in impulsive choice in rats. Heliyon, 2019, 5, e02254.                                                                            | 3.2 | 3         |
| 78 | Neurobiological and Behavioral Consequences of Exposure to Childhood Traumatic Stress. , 2006, ,<br>180-195.                                                                                                                     |     | 2         |
| 79 | Risks of Stimulant Use for Attention Deficit Hyperactivity Disorder on the Developing Brain: Primum non nocere. Clinical Pediatrics, 2017, 56, 805-810.                                                                          | 0.8 | 2         |
| 80 | Novelty preferences and cocaine-associated cues influence regions associated with the salience network in juvenile female rats. Pharmacology Biochemistry and Behavior, 2021, 203, 173117.                                       | 2.9 | 2         |