Jolien Gooijers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6017819/publications.pdf

Version: 2024-02-01

28 1,067 16 28
papers citations h-index g-index

28 28 28 1382 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Representational similarity scores of digits in the sensorimotor cortex are associated with behavioral performance. Cerebral Cortex, 2022, 32, 3848-3863.	2.9	3
2	Task-Related Modulation of Sensorimotor GABA+ Levels in Association with Brain Activity and Motor Performance: A Multimodal MRS–fMRI Study in Young and Older Adults. Journal of Neuroscience, 2022, 42, 1119-1130.	3.6	2
3	GABA levels are differentially associated with bimanual motor performance in older as compared to young adults. Neurolmage, 2021, 231, 117871.	4.2	16
4	Brain Structural and Functional Connectivity: A Review of Combined Works of Diffusion Magnetic Resonance Imaging and Electro-Encephalography. Frontiers in Human Neuroscience, 2021, 15, 721206.	2.0	33
5	The role of the PMd in task complexity: functional connectivity is modulated by motor learning and age. Neurobiology of Aging, 2020, 92, 12-27.	3.1	6
6	Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. NeuroImage, 2020, 209, 116530.	4.2	17
7	White matter characteristics of motor, sensory and interhemispheric tracts underlying impaired upper limb function in children with unilateral cerebral palsy. Brain Structure and Function, 2020, 225, 1495-1509.	2.3	15
8	Reduced Modulation of Task-Related Connectivity Mediates Age-Related Declines in Bimanual Performance. Cerebral Cortex, 2020, 30, 4346-4360.	2.9	8
9	A combined diffusionâ€weighted and electroencephalography study on ageâ€related differences in connectivity in the motor network during bimanual performance. Human Brain Mapping, 2019, 40, 1799-1813.	3.6	16
10	Challenge to Promote Change: The Neural Basis of the Contextual Interference Effect in Young and Older Adults. Journal of Neuroscience, 2018, 38, 3333-3345.	3.6	22
11	White matter microstructural organisation of interhemispheric pathways predicts different stages of bimanual coordination learning in young and older adults. European Journal of Neuroscience, 2018, 47, 446-459.	2.6	9
12	Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Structure and Function, 2018, 223, 2039-2053.	2.3	15
13	Two hands, one brain, and aging. Neuroscience and Biobehavioral Reviews, 2017, 75, 234-256.	6.1	94
14	Relative cortico-subcortical shift in brain activity but preserved training-induced neural modulation in older adults during bimanual motor learning. Neurobiology of Aging, 2017, 58, 54-67.	3.1	37
15	Neural predictors of motor control and impact of visuoâ€proprioceptive information in youth. Human Brain Mapping, 2017, 38, 5628-5647.	3.6	6
16	Enhanced prefrontal functional–structural networks to support postural control deficits after traumatic brain injury in a pediatric population. Network Neuroscience, 2017, 1, 116-142.	2.6	32
17	Movement preparation and execution: differential functional activation patterns after traumatic brain injury. Brain, 2016, 139, 2469-2485.	7.6	18
18	Age-Related Changes in Frontal Network Structural and Functional Connectivity in Relation to Bimanual Movement Control. Journal of Neuroscience, 2016, 36, 1808-1822.	3.6	75

#	Article	lF	CITATION
19	Subcortical Volume Loss in the Thalamus, Putamen, and Pallidum, Induced by Traumatic Brain Injury, Is Associated With Motor Performance Deficits. Neurorehabilitation and Neural Repair, 2016, 30, 603-614.	2.9	39
20	Reduced Neural Differentiation Between Feedback Conditions After Bimanual Coordination Training with and without Augmented Visual Feedback. Cerebral Cortex, 2015, 25, 1958-1969.	2.9	42
21	Bimanual motor deficits in older adults predicted by diffusion tensor imaging metrics of corpus callosum subregions. Brain Structure and Function, 2015, 220, 273-290.	2.3	64
22	White matter organization in relation to upper limb motor control in healthy subjects: exploring the added value of diffusion kurtosis imaging. Brain Structure and Function, 2014, 219, 1627-1638.	2.3	17
23	Altered structural networks and executive deficits in traumatic brain injury patients. Brain Structure and Function, 2014, 219, 193-209.	2.3	143
24	Interactions between brain structure and behavior: The corpus callosum and bimanual coordination. Neuroscience and Biobehavioral Reviews, 2014, 43, 1-19.	6.1	126
25	Diffusion tensor imaging metrics of the corpus callosum in relation to bimanual coordination: Effect of task complexity and sensory feedback. Human Brain Mapping, 2013, 34, 241-252.	3.6	57
26	Microstructural organization of corpus callosum projections to prefrontal cortex predicts bimanual motor learning. Learning and Memory, 2012, 19, 351-357.	1.3	51
27	Bimanual Coordination and Corpus Callosum Microstructure in Young Adults with Traumatic Brain Injury: A Diffusion Tensor Imaging Study. Journal of Neurotrauma, 2011, 28, 897-913.	3.4	58
28	Testing Multiple Coordination Constraints with a Novel Bimanual Visuomotor Task. PLoS ONE, 2011, 6, e23619.	2.5	46