
Alejandro Llanos-Cuentas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6016796/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A 7-Year-Old Girl from Peru With a Chronic Skin Ulcer. , 2022, , 4-6.		Ο
2	Relative contribution of low-density and asymptomatic infections to Plasmodium vivax transmission in the Amazon: pooled analysis of individual participant data from population-based cross-sectional surveys. The Lancet Regional Health Americas, 2022, 9, 100169.	2.6	14
3	Leishmania RNA virus-1 is similarly detected among metastatic and non-metastatic phenotypes in a prospective cohort of American Tegumentary Leishmaniasis. PLoS Neglected Tropical Diseases, 2022, 16, e0010162.	3.0	9
4	A phase II multicenter randomized study to evaluate the safety and efficacy of combining thermotherapy and a short course of miltefosine for the treatment of uncomplicated cutaneous leishmaniasis in the New World. PLoS Neglected Tropical Diseases, 2022, 16, e0010238.	3.0	4
5	Tafenoquine for the treatment of <i>Plasmodium vivax</i> malaria. Expert Opinion on Pharmacotherapy, 2022, 23, 759-768.	1.8	5
6	Malaria transmission structure in the Peruvian Amazon through antibody signatures to Plasmodium vivax. PLoS Neglected Tropical Diseases, 2022, 16, e0010415.	3.0	6
7	Elevated baseline expression of seven virulence factor RNA transcripts in visceralizing species of <i>Leishmania</i> : a preliminary quantitative PCR study. Therapeutic Advances in Infectious Disease, 2022, 9, 204993612211026.	1.8	0
8	Insights into Plasmodium vivax Asymptomatic Malaria Infections and Direct Skin-Feeding Assays to Assess Onward Malaria Transmission in the Amazon. American Journal of Tropical Medicine and Hygiene, 2022, 107, 154-161.	1.4	3
9	Temporal and Microspatial Heterogeneity in Transmission Dynamics of Coendemic <i>Plasmodium vivax</i> and <i>Plasmodium falciparum</i> in Two Rural Cohort Populations in the Peruvian Amazon. Journal of Infectious Diseases, 2021, 223, 1466-1477.	4.0	8
10	Heterogeneity in response to serological exposure markers of recent Plasmodium vivax infections in contrasting epidemiological contexts. PLoS Neglected Tropical Diseases, 2021, 15, e0009165.	3.0	17
11	Towards one standard treatment for uncomplicated Plasmodium falciparum and Plasmodium vivax malaria: Perspectives from and for the Peruvian Amazon. International Journal of Infectious Diseases, 2021, 105, 293-297.	3.3	1
12	Integrating Parasitological and Entomological Observations to Understand Malaria Transmission in Riverine Villages in the Peruvian Amazon. Journal of Infectious Diseases, 2021, 223, S99-S110.	4.0	9
13	Leishmaniasis cutánea: una mirada a la clÃnica, diagnóstico y tratamiento de esta enigmática enfermedad. Piel, 2021, 36, 317-324.	0.0	1
14	Innate immune response: ally or enemy in cutaneous leishmaniasis?. Pathogens and Disease, 2021, 79, .	2.0	4
15	Evaluation of a point-of-care molecular detection device for Leishmania spp. and intercurrent fungal and mycobacterial organisms in Peruvian patients with cutaneous ulcers. Infection, 2021, 49, 1203-1211.	4.7	7
16	COVID-19 Therapeutics for Low- and Middle-Income Countries: A Review of Candidate Agents with Potential for Near-Term Use and Impact. American Journal of Tropical Medicine and Hygiene, 2021, 105, 584-595.	1.4	10
17	Comparison of Whole Genome Sequencing versus Standard Molecular Diagnostics for Species Identification in the Leishmania Viannia Subgenus. American Journal of Tropical Medicine and Hygiene, 2021, 105, 660-669.	1.4	1
18	Time-Varying Effects of Meteorological Variables on Malaria Epidemiology in the Context of Interrupted Control Efforts in the Amazon Rainforest, 2000–2017, Frontiers in Medicine, 2021, 8, 721515	2.6	7

#	Article	IF	CITATIONS
19	Ultrasonographic characteristics of cutaneous leishmaniasis. Journal of the European Academy of Dermatology and Venereology, 2020, 34, e193-e195.	2.4	7
20	Ecological divergence and hybridization of Neotropical <i>Leishmania</i> parasites. Proceedings of the United States of America, 2020, 117, 25159-25168.	7.1	60
21	Pharmacogenetic assessment of tafenoquine efficacy in patients with Plasmodium vivax malaria. Pharmacogenetics and Genomics, 2020, 30, 161-165.	1.5	8
22	Cultural Values and the Coliform Bacterial Load of "Masato,―an Amazon Indigenous Beverage. EcoHealth, 2020, 17, 370-380.	2.0	5
23	Open-Source 3D Printable GPS Tracker to Characterize the Role of Human Population Movement on Malaria Epidemiology in River Networks: A Proof-of-Concept Study in the Peruvian Amazon. Frontiers in Public Health, 2020, 8, 526468.	2.7	10
24	Malaria eradication. Lancet, The, 2020, 395, e67.	13.7	3
25	A Case–Control Study on the Association Between Intestinal Helminth Infections and Treatment Failure in Patients With Cutaneous Leishmaniasis. Open Forum Infectious Diseases, 2020, 7, ofaa155.	0.9	5
26	Economic costs analysis of uncomplicated malaria case management in the Peruvian Amazon. Malaria Journal, 2020, 19, 161.	2.3	10
27	Anti–MSP-10 lgG indicates recent exposure to Plasmodium vivax infection in the Peruvian Amazon. JCl Insight, 2020, 5, .	5.0	10
28	Leishmania RNA Virus 1 (LRV-1) in Leishmania (Viannia) braziliensis Isolates from Peru: A Description of Demographic and Clinical Correlates. American Journal of Tropical Medicine and Hygiene, 2020, 102, 280-285.	1.4	12
29	Malaria Situation in the Peruvian Amazon during the COVID-19 Pandemic. American Journal of Tropical Medicine and Hygiene, 2020, 103, 1773-1776.	1.4	16
30	Malaria risk assessment and mapping using satellite imagery and boosted regression trees in the Peruvian Amazon. Scientific Reports, 2019, 9, 15173.	3.3	26
31	Microsatellite analysis reveals connectivity among geographically distant transmission zones of Plasmodium vivax in the Peruvian Amazon: A critical barrier to regional malaria elimination. PLoS Neglected Tropical Diseases, 2019, 13, e0007876.	3.0	15
32	Single-Dose Tafenoquine to Prevent Relapse of <i>Plasmodium vivax</i> Malaria. New England Journal of Medicine, 2019, 380, 215-228.	27.0	193
33	Virulence factor RNA transcript expression in the Leishmania Viannia subgenus: influence of species, isolate source, and Leishmania RNA virus-1. Tropical Medicine and Health, 2019, 47, 25.	2.8	15
34	Volumetric monitoring of cutaneous leishmaniasis ulcers: can camera be as accurate as laser scanner?. Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization, 2019, 7, 667-675.	1.9	3
35	Tafenoquine versus Primaquine to Prevent Relapse of <i>Plasmodium vivax</i> Malaria. New England Journal of Medicine, 2019, 380, 229-241.	27.0	158
36	Is CD1a useful for leishmaniasis diagnosis in the New World?. Journal of Cutaneous Pathology, 2019, 46, 90-92.	1.3	9

#	Article	IF	CITATIONS
37	Use of open mobile mapping tool to assess human mobility traceability in rural offline populations with contrasting malaria dynamics. PeerJ, 2019, 7, e6298.	2.0	17
38	Multiple non-climatic drivers of food insecurity reinforce climate change maladaptation trajectories among Peruvian Indigenous Shawi in the Amazon. PLoS ONE, 2018, 13, e0205714.	2.5	35
39	Effectiveness of a Malaria Surveillance Strategy Based on Active Case Detection during High Transmission Season in the Peruvian Amazon. International Journal of Environmental Research and Public Health, 2018, 15, 2670.	2.6	11
40	Antimalarial activity of single-dose DSM265, a novel plasmodium dihydroorotate dehydrogenase inhibitor, in patients with uncomplicated Plasmodium falciparum or Plasmodium vivax malaria infection: a proof-of-concept, open-label, phase 2a study. Lancet Infectious Diseases, The, 2018, 18, 874-883.	9.1	106
41	Tegumentary leishmaniasis and coinfections other than HIV. PLoS Neglected Tropical Diseases, 2018, 12, e0006125.	3.0	33
42	Harmonized clinical trial methodologies for localized cutaneous leishmaniasis and potential for extensive network with capacities for clinical evaluation. PLoS Neglected Tropical Diseases, 2018, 12, e0006141.	3.0	32
43	Mucosal leishmaniasis: urgent need for more research. Revista Da Sociedade Brasileira De Medicina Tropical, 2018, 51, 120-121.	0.9	8
44	Regulatory T-Cell Dynamics in Cutaneous and Mucocutaneous Leishmaniasis due to Leishmania braziliensis. American Journal of Tropical Medicine and Hygiene, 2018, 98, 753-758.	1.4	6
45	Spatio-temporal analysis of malaria incidence in the Peruvian Amazon Region between 2002 and 2013. Scientific Reports, 2017, 7, 40350.	3.3	29
46	Indigenous Shawi communities and national food security support: Right direction, but not enough. Food Policy, 2017, 73, 75-87.	6.0	15
47	Influence of Leishmania RNA Virus 1 on Proinflammatory Biomarker Expression in a Human Macrophage Model of American Tegumentary Leishmaniasis. Journal of Infectious Diseases, 2017, 216, 877-886.	4.0	24
48	Micro-epidemiology and spatial heterogeneity of P. vivax parasitaemia in riverine communities of the Peruvian Amazon: A multilevel analysis. Scientific Reports, 2017, 7, 8082.	3.3	40
49	Evaluation of the efficacy, safety and acceptability of a fish protein isolate in the nutrition of children under 36 months of age. Public Health Nutrition, 2017, 20, 2819-2826.	2.2	5
50	High prevalence of very-low Plasmodium falciparum and Plasmodium vivax parasitaemia carriers in the Peruvian Amazon: insights into local and occupational mobility-related transmission. Malaria Journal, 2017, 16, 415.	2.3	30
51	Predominance of asymptomatic and sub-microscopic infections characterizes the Plasmodium gametocyte reservoir in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2017, 11, e0005674.	3.0	40
52	Micro-heterogeneity of malaria transmission in the Peruvian Amazon: a baseline assessment underlying a population-based cohort study. Malaria Journal, 2017, 16, 312.	2.3	31
53	Accelerating to Zero: Strategies to Eliminate Malaria in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 2016, 94, 1200-1207.	1.4	16
54	Drawing the line between adaptation and development: a systematic literature review of planned adaptation in developing countries. Wiley Interdisciplinary Reviews: Climate Change, 2016, 7, 707-726.	8.1	66

#	Article	IF	CITATIONS
55	Epidemiology of <i>Plasmodium vivax</i> Malaria in Peru. American Journal of Tropical Medicine and Hygiene, 2016, 95, 133-144.	1.4	61
56	Food system vulnerability amidst the extreme 2010–2011 flooding in the Peruvian Amazon: a case study from the Ucayali region. Food Security, 2016, 8, 551-570.	5.3	28
57	Tafenoquine treatment of Plasmodium vivax malaria: suggestive evidence that CYP2D6 reduced metabolism is not associated with relapse in the Phase 2b DETECTIVE trial. Malaria Journal, 2016, 15, 97.	2.3	75
58	Estimation of the Antirelapse Efficacy of Tafenoquine, Using <i>Plasmodium vivax</i> Genotyping. Journal of Infectious Diseases, 2016, 213, 794-799.	4.0	28
59	Quantitative Kinetoplast DNA Assessment During Treatment of Mucosal Leishmaniasis as a Potential Biomarker of Outcome: A Pilot Study. American Journal of Tropical Medicine and Hygiene, 2016, 94, 107-113.	1.4	11
60	Association of the Endobiont Double-Stranded RNA Virus LRV1 With Treatment Failure for Human Leishmaniasis Caused by <i>Leishmania braziliensis</i> in Peru and Bolivia. Journal of Infectious Diseases, 2016, 213, 112-121.	4.0	114
61	Population Genetics of Plasmodium vivax in the Peruvian Amazon. PLoS Neglected Tropical Diseases, 2016, 10, e0004376.	3.0	43
62	Quantification of Leishmania (Viannia) Kinetoplast DNA in Ulcers of Cutaneous Leishmaniasis Reveals Inter-site and Inter-sampling Variability in Parasite Load. PLoS Neglected Tropical Diseases, 2015, 9, e0003936.	3.0	34
63	Hotspots of Malaria Transmission in the Peruvian Amazon: Rapid Assessment through a Parasitological and Serological Survey. PLoS ONE, 2015, 10, e0137458.	2.5	52
64	Plasmodium vivax malaria at households: spatial clustering and risk factors in a low endemicity urban area of the northwestern Peruvian coast. Malaria Journal, 2015, 14, 176.	2.3	34
65	Vulnerability and adaptive capacity of community food systems in the Peruvian Amazon: a case study from Panaillo. Natural Hazards, 2015, 77, 2049-2079.	3.4	45
66	Genome-Scale Protein Microarray Comparison of Human Antibody Responses in Plasmodium vivax Relapse and Reinfection. American Journal of Tropical Medicine and Hygiene, 2015, 93, 801-809.	1.4	29
67	A 7-year-old Girl from Peru with a Chronic Skin Ulcer. , 2015, , 49-51.		0
68	Modelling the potential of focal screening and treatment as elimination strategy for Plasmodium falciparum malaria in the Peruvian Amazon Region. Parasites and Vectors, 2015, 8, 261.	2.5	13
69	Characteristics of Travel-Related Severe Plasmodium vivax and Plasmodium falciparum Malaria in Individuals Hospitalized at a Tertiary Referral Center in Lima, Peru. American Journal of Tropical Medicine and Hygiene, 2015, 93, 1249-1253.	1.4	5
70	Performance of BinaxNOW G6PD Deficiency Point-of-Care Diagnostic in P. vivax-Infected Subjects. American Journal of Tropical Medicine and Hygiene, 2015, 92, 22-27.	1.4	27
71	Tratamientos tradicionales utilizados en un área endémica de leishmaniasis cutánea en el Perú. Revista Peruana De Medicina De Experimental Y Salud Publica, 2015, 32, 761.	0.4	4
72	Population structure and spatio-temporal transmission dynamics of Plasmodium vivax after radical cure treatment in a rural village of the Peruvian Amazon. Malaria Journal, 2014, 13, 8.	2.3	27

#	Article	IF	CITATIONS
73	Tafenoquine plus chloroquine for the treatment and relapse prevention of Plasmodium vivax malaria (DETECTIVE): a multicentre, double-blind, randomised, phase 2b dose-selection study. Lancet, The, 2014, 383, 1049-1058.	13.7	208
74	Infection of Laboratory-Colonized Anopheles darlingi Mosquitoes by Plasmodium vivax. American Journal of Tropical Medicine and Hygiene, 2014, 90, 612-616.	1.4	50
75	Controversial role of leishmania RNA virus as a determinant of pathogenicity in human leishmaniasis. International Journal of Infectious Diseases, 2014, 21, 165-166.	3.3	7
76	Real-Time PCR Assay for Detection and Quantification of Leishmania (Viannia) Organisms in Skin and Mucosal Lesions: Exploratory Study of Parasite Load and Clinical Parameters. Journal of Clinical Microbiology, 2013, 51, 1826-1833.	3.9	84
77	Assessing malaria transmission in a low endemicity area of north-western Peru. Malaria Journal, 2013, 12, 339.	2.3	34
78	Simultaneous Infection with Leishmania (Viannia) braziliensis and L. (V.) lainsoni in a Peruvian Patient with Cutaneous Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2013, 88, 774-777.	1.4	12
79	Novel Low-Cost Thermotherapy for Cutaneous Leishmaniasis in Peru. PLoS Neglected Tropical Diseases, 2013, 7, e2196.	3.0	20
80	A FRET-Based Real-Time PCR Assay to Identify the Main Causal Agents of New World Tegumentary Leishmaniasis. PLoS Neglected Tropical Diseases, 2013, 7, e1956.	3.0	31
81	Pharmacokinetics and Absorption of Paromomycin and Gentamicin from Topical Creams Used To Treat Cutaneous Leishmaniasis. Antimicrobial Agents and Chemotherapy, 2013, 57, 4809-4815.	3.2	19
82	Neurological manifestations of human leishmaniasis. Handbook of Clinical Neurology / Edited By P J Vinken and G W Bruyn, 2013, 114, 193-198.	1.8	10
83	Prediction Score for Antimony Treatment Failure in Patients with Ulcerative Leishmaniasis Lesions. PLoS Neglected Tropical Diseases, 2012, 6, e1656.	3.0	22
84	Leishmania (Viannia) Species Identification on Clinical Samples from Cutaneous Leishmaniasis Patients in Peru: Assessment of a Molecular Stepwise Approach. Journal of Clinical Microbiology, 2012, 50, 495-498.	3.9	28
85	High Degree of Plasmodium vivax Diversity in the Peruvian Amazon Demonstrated by Tandem Repeat Polymorphism Analysis. American Journal of Tropical Medicine and Hygiene, 2012, 86, 580-586.	1.4	17
86	A 3D assessment tool for accurate volume measurement for monitoring the evolution of cutaneous Leishmaniasis wounds. , 2012, 2012, 2025-8.		18
87	Socio-demographics and the development of malaria elimination strategies in the low transmission setting. Acta Tropica, 2012, 121, 292-302.	2.0	57
88	Whole genome sequencing analysis of Plasmodium vivax using whole genome capture. BMC Genomics, 2012, 13, 262.	2.8	46
89	Accurate and rapid species typing from cutaneous and mucocutaneous leishmaniasis lesions of the New World. Diagnostic Microbiology and Infectious Disease, 2012, 74, 142-150.	1.8	40
90	Non-Invasive Cytology Brush PCR for the Diagnosis and Causative Species Identification of American Cutaneous Leishmaniasis in Peru. PLoS ONE, 2012, 7, e49738.	2.5	17

#	Article	IF	CITATIONS
91	Polymerase Chain Reaction Detection of Leishmania kDNA from the Urine of Peruvian Patients with Cutaneous and Mucocutaneous Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2011, 84, 556-561.	1.4	26
92	Non-Invasive Cytology Brush PCR Diagnostic Testing in Mucosal Leishmaniasis: Superior Performance to Conventional Biopsy with Histopathology. PLoS ONE, 2011, 6, e26395.	2.5	37
93	Plasmodium vivax Sub-Patent Infections after Radical Treatment Are Common in Peruvian Patients: Results of a 1-Year Prospective Cohort Study. PLoS ONE, 2011, 6, e16257.	2.5	53
94	Multilocus genotyping reveals a polyphyletic pattern among naturally antimony-resistant Leishmania braziliensis isolates from Peru. Infection, Genetics and Evolution, 2011, 11, 1873-1880.	2.3	16
95	Comparison of gene expression patterns among <i>Leishmania braziliensis</i> clinical isolates showing a different <i>in vitro</i> susceptibility to pentavalent antimony. Parasitology, 2011, 138, 183-193.	1.5	37
96	Lack of Molecular Correlates of Plasmodium vivax Ookinete Development. American Journal of Tropical Medicine and Hygiene, 2011, 85, 207-213.	1.4	10
97	Diagnostic Performance of Filter Paper Lesion Impression PCR for Secondarily Infected Ulcers and Nonulcerative Lesions Caused by Cutaneous Leishmaniasis. Journal of Clinical Microbiology, 2011, 49, 1097-1100.	3.9	22
98	Comparative Gene Expression Analysis throughout the Life Cycle of Leishmania braziliensis: Diversity of Expression Profiles among Clinical Isolates. PLoS Neglected Tropical Diseases, 2011, 5, e1021.	3.0	21
99	Clinical and Demographic Stratification of Test Performance: A Pooled Analysis of Five Laboratory Diagnostic Methods for American Cutaneous Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2010, 83, 345-350.	1.4	49
100	CXCL10 Production by Human Monocytes in Response to <i>Leishmania braziliensis</i> Infection. Infection and Immunity, 2010, 78, 301-308.	2.2	68
101	Optimized In Vitro Production of Plasmodium vivax Ookinetes. American Journal of Tropical Medicine and Hygiene, 2010, 83, 1183-1186.	1.4	14
102	Whole-genome sequencing and microarray analysis of ex vivo <i>Plasmodium vivax</i> reveal selective pressure on putative drug resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 20045-20050.	7.1	99
103	Detection and Species Identification of <i>Leishmania</i> DNA from Filter Paper Lesion Impressions for Patients with American Cutaneous Leishmaniasis. Clinical Infectious Diseases, 2010, 50, e1-e6.	5.8	62
104	A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1+MPL-SE vaccine when used in combination with sodium stibogluconate for the treatment of mucosal leishmaniasis. Vaccine, 2010, 28, 7427-7435.	3.8	64
105	A battery of 12 microsatellite markers for genetic analysis of the <i>Leishmania</i> (<i>Viannia</i>) <i>guyanensis</i> complex. Parasitology, 2010, 137, 1879-1884.	1.5	17
106	Field evaluation of a rapid diagnostic test (Parascreenâ"¢) for malaria diagnosis in the Peruvian Amazon. Malaria Journal, 2010, 9, 154.	2.3	24
107	First-Line Therapy for Human Cutaneous Leishmaniasis in Peru Using the TLR7 Agonist Imiquimod in Combination with Pentavalent Antimony. PLoS Neglected Tropical Diseases, 2009, 3, e491.	3.0	65
108	Extreme inbreeding in <i>Leishmania braziliensis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 10224-10229.	7.1	158

#	Article	IF	CITATIONS
109	<i>Leishmania</i> OligoC-TesT as a Simple, Rapid, and Standardized Tool for Molecular Diagnosis of Cutaneous Leishmaniasis in Peru. Journal of Clinical Microbiology, 2009, 47, 2560-2563.	3.9	22
110	Treatment of cryptococcal meningitis in Peruvian AIDS Patients using amphotericin B and fluconazole. Journal of Infection, 2008, 57, 260-265.	3.3	20
111	PERMANENT GENETIC RESOURCES: A set of 12 microsatellite loci for genetic studies of Leishmania braziliensis. Molecular Ecology Resources, 2008, 8, 351-353.	4.8	16
112	Clinical and Parasite Species Risk Factors for Pentavalent Antimonial Treatment Failure in Cutaneous Leishmaniasis in Peru. Clinical Infectious Diseases, 2008, 46, 223-231.	5.8	130
113	Optimization of Microculture and Evaluation of Miniculture for the Isolation of Leishmania Parasites from Cutaneous Lesions in Peru. American Journal of Tropical Medicine and Hygiene, 2008, 79, 847-852.	1.4	28
114	Optimization of microculture and evaluation of miniculture for the isolation of Leishmania parasites from cutaneous lesions in Peru. American Journal of Tropical Medicine and Hygiene, 2008, 79, 847-52.	1.4	16
115	Influence ofLeishmania (Viannia)Species on the Response to Antimonial Treatment in Patients with American Tegumentary Leishmaniasis. Journal of Infectious Diseases, 2007, 195, 1846-1851.	4.0	212
116	Role of Imiquimod and Parenteral Meglumine Antimoniate in the Initial Treatment of Cutaneous Leishmaniasis. Clinical Infectious Diseases, 2007, 44, 1549-1554.	5.8	91
117	Evaluation of a Microculture Method for Isolation of <i>Leishmania</i> Parasites from Cutaneous Lesions of Patients in Peru. Journal of Clinical Microbiology, 2007, 45, 3680-3684.	3.9	39
118	A Randomised Controlled Trial to Assess the Efficacy of Dihydroartemisinin-Piperaquine for the Treatment of Uncomplicated Falciparum Malaria in Peru. PLoS ONE, 2007, 2, e1101.	2.5	44
119	Isolation and molecular identification of Leishmania (Viannia) peruviana from naturally infected Lutzomyia peruensis (Diptera: Psychodidae) in the Peruvian Andes. Memorias Do Instituto Oswaldo Cruz, 2007, 102, 655-658.	1.6	33
120	MULTIPLE HYBRID GENOTYPES OF LEISHMANIA (VIANNIA) IN A FOCUS OF MUCOCUTANEOUS LEISHMANIASIS. American Journal of Tropical Medicine and Hygiene, 2007, 76, 573-578.	1.4	101
121	Multiple hybrid genotypes of Leishmania (viannia) in a focus of mucocutaneous Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2007, 76, 573-8.	1.4	59
122	American Tegumentary Leishmaniasis: Is Antimonial Treatment Outcome Related to Parasite Drug Susceptibility?. Journal of Infectious Diseases, 2006, 194, 1168-1175.	4.0	92
123	Development of a Genetic Assay to Distinguish between Leishmania viannia Species on the Basis of Isoenzyme Differences. Clinical Infectious Diseases, 2006, 42, 801-809.	5.8	34
124	EXPERIMENTAL INFECTION OF THE NEOTROPICAL MALARIA VECTOR ANOPHELES DARLINGI BY HUMAN PATIENT-DERIVED PLASMODIUM VIVAX IN THE PERUVIAN AMAZON. American Journal of Tropical Medicine and Hygiene, 2006, 75, 610-616.	1.4	60
125	Experimental infection of the neotropical malaria vector Anopheles darlingi by human patient-derived Plasmodium vivax in the Peruvian Amazon. American Journal of Tropical Medicine and Hygiene, 2006, 75, 610-6.	1.4	44
126	Differential polyadenylation of ribosomal RNA during post-transcriptional processing inLeishmania. Parasitology, 2005, 131, 321-329.	1.5	20

#	Article	IF	CITATIONS
127	Control of mucocutaneous leishmaniasis, a neglected disease: results of a control programme in Satipo Province, Peru. Tropical Medicine and International Health, 2005, 10, 856-862.	2.3	12
128	Randomized, Double-Blind Clinical Trial of Topical Imiquimod 5% with Parenteral Meglumine Antimoniate in the Treatment of Cutaneous Leishmaniasis in Peru. Clinical Infectious Diseases, 2005, 40, 1395-1403.	5.8	111
129	COMPARISON OF MEGLUMINE ANTIMONIATE AND PENTAMIDINE FOR PERUVIAN CUTANEOUS LEISHMANIASIS. American Journal of Tropical Medicine and Hygiene, 2005, 72, 133-137.	1.4	78
130	THE SENSITIVITY OF CLINICAL ISOLATES OF LEISHMANIA FROM PERU AND NEPAL TO MILTEFOSINE. American Journal of Tropical Medicine and Hygiene, 2005, 73, 272-275.	1.4	99
131	Comparison of meglumine antimoniate and pentamidine for peruvian cutaneous leishmaniasis. American Journal of Tropical Medicine and Hygiene, 2005, 72, 133-7.	1.4	26
132	The sensitivity of clinical isolates of Leishmania from Peru and Nepal to miltefosine. American Journal of Tropical Medicine and Hygiene, 2005, 73, 272-5.	1.4	40
133	A Randomized, Double-Blind, Parallel-Group, Dose-Response Study of Micafungin Compared with Fluconazole for the Treatment of Esophageal Candidiasis in HIV-Positive Patients. Clinical Infectious Diseases, 2004, 39, 842-849.	5.8	188
134	The influence of climate on the epidemiology of bartonellosis in Ancash, Peru. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2004, 98, 116-124.	1.8	25
135	Culture-Independent Species Typing of Neotropical Leishmania for Clinical Validation of a PCR-Based Assay Targeting Heat Shock Protein 70 Genes. Journal of Clinical Microbiology, 2004, 42, 2294-2297.	3.9	174
136	Evaluation of the rapid diagnostic test OptiMAL for diagnosis of malaria due to Plasmodium vivax. Brazilian Journal of Infectious Diseases, 2004, 8, 151-155.	0.6	22
137	Direct identification of Leishmania species in biopsies from patients with American tegumentary leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003, 97, 80-87.	1.8	40
138	Domestic dog ownership: a risk factor for human infection with Leishmania (viannia) species. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2003, 97, 141-145.	1.8	31
139	Environmental factors as determinants of malaria risk. A descriptive study on the northern coast of Peru. Tropical Medicine and International Health, 2002, 7, 518-525.	2.3	49
140	Successful Treatment of Drugâ€Resistant Cutaneous Leishmaniasis in Humans by Use of Imiquimod, an Immunomodulator. Clinical Infectious Diseases, 2001, 33, 1847-1851.	5.8	158
141	Atovaquone and proguanil hydrochloride compared with chloroquine or pyrimethamine/sulfadoxine for treatment of acute Plasmodium falciparum malaria in Peru. Brazilian Journal of Infectious Diseases, 2001, 5, 67-72.	0.6	19
142	Environmental risk factors for clinical malaria: a case-control study in the Grau region of Peru. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2001, 95, 577-583.	1.8	48
143	Survey of Bartonella species infecting intradomicillary animals in the HuayllacallÃ _i n Valley, Ancash, Peru, a region endemic for human bartonellosis American Journal of Tropical Medicine and Hygiene, 1999, 60, 799-805.	1.4	56
144	The gp63 gene locus, a target for genetic characterization of <i>Leishmania</i> belonging to subgenus <i>Viannia</i> . Parasitology, 1998, 117, 1-13.	1.5	64

#	Article	IF	CITATIONS
145	Short report: detection of Leishmaniavirus in human biopsy samples of leishmaniasis from Peru American Journal of Tropical Medicine and Hygiene, 1998, 58, 192-194.	1.4	24
146	The gp63 gene locus, a target for genetic characterization of Leishmania belonging to subgenus Viannia. Parasitology, 1998, 117 (Pt 1), 1-13.	1.5	17
147	Efficacy of Sodium Stibogluconate Alone and in Combination with Allopurinol for Treatment of Mucocutaneous Leishmaniasis. Clinical Infectious Diseases, 1997, 25, 677-684.	5.8	53
148	From population to genome: ecogenetics of <i>Leishmania (Viannia) braziliensis</i> and <i>L. (V.) peruviana</i> . Annals of Tropical Medicine and Parasitology, 1995, 89, 45-53.	1.6	14
149	The relationship between CDC lightâ€trap and humanâ€bait catches of endophagic sandflies (Diptera:) Tj ETQq1 I	1 0.78431 1.5	4_rgBT /Ove
150	An association between phlebotomine sandflies and aphids in the Peruvian Andes. Medical and Veterinary Entomology, 1995, 9, 127-132.	1.5	27
151	Extensive polymorphism at the Gp63 locus in field isolates of Leishmania peruviana. Molecular and Biochemical Parasitology, 1995, 72, 203-213.	1.1	16
152	Putative Leishmania hybrids in the Eastern Andean valley of Huanuco, Peru. Acta Tropica, 1995, 59, 293-307.	2.0	96
153	Karyotype plasticity in Neotropical Leishmania: an index for measuring genomic distance among L. (V.) peruviana and L. (V.) braziliensis populations. Parasitology, 1995, 110, 21-30.	1.5	31
154	The fall and rise of Andean cutaneous leishmaniasis: transient impact of the DDT campaign in Peru. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1994, 88, 389-393.	1.8	29
155	Comparative activity of phlebotomine sandflies (Diptera: Psychodidae) in different crops in the Peruvian Andes. Bulletin of Entomological Research, 1994, 84, 461-467.	1.0	10
156	Efficacy of 28-Day and 40-Day Regimens of Sodium Stibogluconate (Pentostam) in the Treatment of Mucosal Leishmaniasis. American Journal of Tropical Medicine and Hygiene, 1994, 51, 77-82.	1.4	45
157	Lutzomyia verrucarum can transmit Leishmania peruviana, the aetiological agent of Andean cutaneous leishmaniasis. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1993, 87, 603-606.	1.8	24
158	Mucocutaneous leishmaniasis and AIDS: case report. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1993, 87, 186.	1.8	25
159	Molecular karyotype variation in <i>Leishmania (Viannia) peruviana</i> : indication of geographical populations in Peru distributed along a north-south cline. Annals of Tropical Medicine and Parasitology, 1993, 87, 335-347.	1.6	49
160	A Comparative Field Study of the Relative Importance of Lutzomyia peruensis and Lutzomyia verrucarum as Vectors of Cutaneous Leishmaniasis in the Peruvian Andes. American Journal of Tropical Medicine and Hygiene, 1993, 49, 260-269.	1.4	34
161	Diagnosis of Leishmania Using the Polymerase Chain Reaction: a Simplified Procedure for Field Work. American Journal of Tropical Medicine and Hygiene, 1993, 49, 348-356.	1.4	174
162	Karyotype polymorphism and conserved characters in the Leishmania (Viannia) braziliensis complex explored with chromosome-derived probes. Annales De La Société Belge De Médecine Tropicale, 1993, 73, 101-18	0.1	8

#	Article	IF	CITATIONS
163	Leishmania (Viannia) peruviana isolated from the sandfly Lutzomyia peruensis (Diptera: Psychodidae) and a sentinel hamster in the HuayllacallÃ _i n Valley, Ancash, Peru. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1991, 85, 60.	1.8	22
164	Efficacy and Toxicity of Sodium Stibogluconate for Mucosal Leishmaniasis. Annals of Internal Medicine, 1990, 113, 934.	3.9	114
165	Genetic Heterogeneity in Peruvian Leishmania Isolates. American Journal of Tropical Medicine and Hygiene, 1989, 41, 416-421.	1.4	16
166	The Use of Nonradioactive DNA Probes for the Characterization of Leishmania Isolates from Peru. American Journal of Tropical Medicine and Hygiene, 1988, 38, 308-314.	1.4	20
167	Environmental Context Drives Transmission Dynamics of Co-Endemic <i>Plasmodium vivax</i> and <i>Plasmodium falciparum</i> in Two Contrasting Epidemiological Settings in the Peruvian Amazon: Results of a Three-Year, Population-Based, Densely-Sampled Longitudinal Cohort Study. SSRN Electronic Journal. 0	0.4	1
168	An open dataset of Plasmodium vivax genome variation in 1,895 worldwide samples. Wellcome Open Research, 0, 7, 136.	1.8	16