Juha Pykälä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6016510/publications.pdf Version: 2024-02-01

Ιιιμη ΡγκΔαΔα

#	Article	IF	CITATIONS
1	Lichen communities on <i>Populus</i> Â <i>tremula</i> are affected by the density of <i>Picea</i> Â <i>abies</i> . Applied Vegetation Science, 2021, 24, e12584.	1.9	3
2	A keystone species, European aspen (Populus tremula L.), in boreal forests: Ecological role, knowledge needs and mapping using remote sensing. Forest Ecology and Management, 2020, 462, 118008.	3.2	34
3	Taxonomy of Verrucaria species characterised by large spores, perithecia leaving pits in the rock and a pale thin thallus in Finland. MycoKeys, 2020, 72, 43-92.	1.9	4
4	Habitat loss and deterioration explain the disappearance of populations of threatened vascular plants, bryophytes and lichens in a hemiboreal landscape. Global Ecology and Conservation, 2019, 18, e00610.	2.1	15
5	Four new epiphytic species in the <i>Micarea prasina</i> group from Europe. Lichenologist, 2019, 51, 7-25.	0.8	26
6	Taxonomy of the Verrucaria kalenskyi – V. xyloxena species complex in Finland. Nova Hedwigia, 2019, 109, 489-511.	0.4	5
7	Verrucaria tenebrosa (Verrucariaceae), a new lichen species from Finland and Norway, and notes on the taxonomy of epiphytic taxa belonging to the V. hydrophila complex. Phytotaxa, 2018, 361, 211.	0.3	6
8	Four new species of <i>Verrucaria</i> from calcareous rocks in Finland. Lichenologist, 2017, 49, 27-37.	0.8	8
9	<i>Verrucaria ahtii</i> , <i>V. oulankaensis</i> and <i>V. vitikainenii</i> , three new species from the <i>Endocarpon</i> group (<i>Verrucariaceae</i> , lichenized Ascomycota). Lichenologist, 2017, 49, 107-116.	0.8	6
10	Relation between extinction and assisted colonization of plants in the arcticâ€alpine and boreal regions. Conservation Biology, 2017, 31, 524-530.	4.7	5
11	Examination of Types of Twenty-Two Species ofVerrucariaDescribed by Hermann Zschacke. Herzogia, 2016, 29, 721-729.	0.4	5
12	Three new species of <i>Atla</i> from calcareous rocks (<i>Verrucariaceae</i> , lichenized) Tj ETQq0 0 0 rgBT /Ove	erlock 10⊺	Tf 50 302 Td
13	Application of the Red List Index as an indicator of habitat change. Biodiversity and Conservation, 2016, 25, 569-585.	2.6	13
14	New records of lichens and allied fungi from the Leningrad Region, Russia. IV. Folia Cryptogamica Estonica, 2013, 50, 23.	0.5	16
15	Effect of habitat area and isolation on plant trait distribution in European forests and grasslands. Ecography, 2012, 35, 356-363.	4.5	78

16	Functional traits and local environment predict vegetation responses to disturbance: a panâ€European multiâ€site experiment. Journal of Ecology, 2011, 99, 777-787.	4.0	125
17	Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon, 2009, 58, 184-208.	0.7	88

18Different responses of plants and herbivore insects to a gradient of vegetation height: an indicator
of the vertebrate grazing intensity and successional age. Oikos, 2006, 115, 401-412.2.7121

Juha Pykã¤ã¤

#	Article	IF	CITATIONS
19	Complementarity-based algorithms for selecting sites to preserve grassland plant species. Agriculture, Ecosystems and Environment, 2005, 106, 41-48.	5.3	5
20	Plant species responses to cattle grazing in mesic semi-natural grassland. Agriculture, Ecosystems and Environment, 2005, 108, 109-117.	5.3	92
21	Plant species richness and persistence of rare plants in abandoned semi-natural grasslands in northern Europe. Basic and Applied Ecology, 2005, 6, 25-33.	2.7	168
22	Effects of New Forestry Practices on Rare Epiphytic Macrolichens. Conservation Biology, 2004, 18, 831-838.	4.7	62
23	Immediate increase in plant species richness after clearâ€cutting of boreal herbâ€rich forests. Applied Vegetation Science, 2004, 7, 29-34.	1.9	90
24	Decline of landscape-scale habitat and species diversity after the end of cattle grazing. Journal for Nature Conservation, 2003, 11, 171-178.	1.8	75
25	Loss of Plant Species Richness and Habitat Connectivity in Grasslands Associated with Agricultural Change in Finland. Ambio, 2003, 32, 447-452.	5.5	121
26	Mitigating Human Effects on European Biodiversity through Traditional Animal Husbandry. Conservation Biology, 2000, 14, 705-712.	4.7	151
27	Taxonomy of the Carex flava complex (Cyperaceae) in Finland. Nordic Journal of Botany, 1994, 14, 173-191.	0.5	24
28	Chromosome counts in the Carex flava complex (Cyperaceae) in Finland. Nordic Journal of Botany, 1992, 12, 651-655.	0.5	11