
Leonid V Zingman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6016252/publications.pdf Version: 2024-02-01

FONID V ZINCMAN

#	Article	IF	CITATIONS
1	Neuroanatomical organization and functional roles of PVN MC4R pathways in physiological and behavioral regulations. Molecular Metabolism, 2022, 55, 101401.	6.5	21
2	BBSome ablation in SF1 neurons causes obesity without comorbidities. Molecular Metabolism, 2021, 48, 101211.	6.5	15
3	OUP accepted manuscript. Europace, 2021, , .	1.7	1
4	ADH5-mediated NO bioactivity maintains metabolic homeostasis in brown adipose tissue. Cell Reports, 2021, 37, 110003.	6.4	10
5	Pdgfrα-Cre mediated knockout of the aryl hydrocarbon receptor protects mice from high-fat diet induced obesity and hepatic steatosis. PLoS ONE, 2020, 15, e0236741.	2.5	11
6	Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Reports, 2020, 33, 108270.	6.4	31
7	Musclin, A Myokine Induced by Aerobic Exercise, Retards Muscle Atrophy During Cancer Cachexia in Mice. Cancers, 2019, 11, 1541.	3.7	45
8	Liver Derived FGF21 Maintains Core Body Temperature During Acute Cold Exposure. Scientific Reports, 2019, 9, 630.	3.3	63
9	Impaired skeletal muscle mitochondrial pyruvate uptake rewires glucose metabolism to drive whole-body leanness. ELife, 2019, 8, .	6.0	54
10	Morpholinoâ€driven gene editing: A new horizon for disease treatment and prevention. Clinical Pharmacology and Therapeutics, 2016, 99, 21-25.	4.7	12
11	Disruption of ATP-sensitive potassium channel function in skeletal muscles promotes production and secretion of musclin. Biochemical and Biophysical Research Communications, 2016, 471, 129-134.	2.1	8
12	Loss of ATP-Sensitive Potassium Channel Surface Expression in Heart Failure Underlies Dysregulation of Action Potential Duration and Myocardial Vulnerability to Injury. PLoS ONE, 2016, 11, e0151337.	2.5	7
13	Musclin is an activity-stimulated myokine that enhances physical endurance. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 16042-16047.	7.1	144
14	Disruption of KATP Channel Expression in Skeletal Muscle by Targeted Oligonucleotide Delivery Promotes Activity-linked Thermogenesis. Molecular Therapy, 2015, 23, 707-716.	8.2	8
15	Inhibition of MCU forces extramitochondrial adaptations governing physiological and pathological stress responses in heart. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 9129-9134.	7.1	140
16	Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads. Journal of General Physiology, 2014, 143, 119-134.	1.9	24
17	Critical roles of junctophilin-2 in T-tubule and excitation–contraction coupling maturation during postnatal development. Cardiovascular Research, 2013, 100, 54-62.	3.8	89
18	Regulation of Cardiac ATP-sensitive Potassium Channel Surface Expression by Calcium/Calmodulin-dependent Protein Kinase II. Journal of Biological Chemistry, 2013, 288, 1568-1581.	3.4	20

LEONID V ZINGMAN

#	Article	IF	CITATIONS
19	Reduction in number of sarcolemmal KATP channels slows cardiac action potential duration shortening under hypoxia. Biochemical and Biophysical Research Communications, 2011, 415, 637-641.	2.1	19
20	Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. Journal of Molecular and Cellular Cardiology, 2011, 51, 72-81.	1.9	52
21	Sarcolemmal ATP-Sensitive K+ Channels Control Energy Expenditure Determining Body Weight. Cell Metabolism, 2010, 11, 58-69.	16.2	61
22	Targeted Disruption of K _{ATP} Channels Aggravates Cardiac Toxicity in Cocaine Abuse. Clinical and Translational Science, 2009, 2, 361-365.	3.1	11
23	Atrial Natriuretic Peptide Frameshift Mutation in Familial Atrial Fibrillation. New England Journal of Medicine, 2008, 359, 158-165.	27.0	300
24	KATP channel mutation confers risk for vein of Marshall adrenergic atrial fibrillation. Nature Clinical Practice Cardiovascular Medicine, 2007, 4, 110-116.	3.3	159
25	Cardiopoietic programming of embryonic stem cells for tumor-free heart repair. Journal of Experimental Medicine, 2007, 204, 405-420.	8.5	229
26	ATP-sensitive potassium channels: metabolic sensing and cardioprotection. Journal of Applied Physiology, 2007, 103, 1888-1893.	2.5	103
27	Calmodulin Kinase II Inhibition Enhances Ischemic Preconditioning by Augmenting ATP-Sensitive K ⁺ Current. Channels, 2007, 1, 387-394.	2.8	28
28	Kv1.5 channelopathy due to KCNA5 loss-of-function mutation causes human atrial fibrillation. Human Molecular Genetics, 2006, 15, 2185-2191.	2.9	446
29	Administration of Allogenic Stem Cells Dosed to Secure Cardiogenesis and Sustained Infarct Repair. Annals of the New York Academy of Sciences, 2005, 1049, 189-198.	3.8	34
30	ATP-sensitive K channel channel/enzyme multimer: Metabolic gating in the heart. Journal of Molecular and Cellular Cardiology, 2005, 38, 895-905.	1.9	85
31	Stable benefit of embryonic stem cell therapy in myocardial infarction. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H471-H479.	3.2	212
32	ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nature Genetics, 2004, 36, 382-387.	21.4	342
33	Two structurally distinct and spatially compartmentalized adenylate kinases are expressed from the AK1 gene in mouse brain. Molecular and Cellular Biochemistry, 2004, 256, 59-72.	3.1	27
34	Cardiac ATP-Sensitive Potassium Channel: A Bi-Functional Channel/Enzyme Multimer. Progress in Experimental Cardiology, 2004, , 167-180.	0.0	0
35	Title is missing!. Journal of Muscle Research and Cell Motility, 2003, 24, 271-276.	2.0	9
36	Cellular remodeling in heart failure disrupts KATP channel-dependent stress tolerance. EMBO Journal, 2003, 22, 1732-1742.	7.8	85

LEONID V ZINGMAN

#	Article	IF	CITATIONS
37	Identity and function of cardiac KATP channels. Journal of Molecular and Cellular Cardiology, 2003, 35, 433-435.	1.9	5
38	Commitment of embryonic stem cells toward a cardiac lineage: molecular mechanisms and evidence for a promising therapeutic approach for heart failure. Journal of Muscle Research and Cell Motility, 2003, 24, 269-74.	2.0	3
39	Tandem Function of Nucleotide Binding Domains Confers Competence to Sulfonylurea Receptor in Gating ATP-sensitive K+ Channels. Journal of Biological Chemistry, 2002, 277, 14206-14210.	3.4	77
40	Coupling of Cell Energetics with Membrane Metabolic Sensing. Journal of Biological Chemistry, 2002, 277, 24427-24434.	3.4	134
41	Kir6.2 is required for adaptation to stress. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13278-13283.	7.1	279
42	Stem cell differentiation requires a paracrine pathway in the heart. FASEB Journal, 2002, 16, 1558-1566.	0.5	442
43	Signaling in Channel/Enzyme Multimers. Neuron, 2001, 31, 233-245.	8.1	183