Craig E Cameron

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6015348/publications.pdf Version: 2024-02-01

	126907	102487
4,761	33	66
citations	h-index	g-index
115	115	5412
docs citations	times ranked	citing authors
	4,761 citations 115 docs citations	4,761 33 citations h-index

#	Article	IF	CITATIONS
1	Robust genome and RNA editing via CRISPR nucleases in PiggyBac systems. Bioactive Materials, 2022, 14, 313-320.	15.6	7
2	The ZCCHC14/TENT4 complex is required for hepatitis A virus RNA synthesis. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	8
3	Characterization of Protein–Phospholipid/Membrane Interactions Using a "Membrane-on-a-Chip― Microfluidic System. Methods in Molecular Biology, 2021, 2251, 143-156.	0.9	1
4	Modeling poliovirus replication dynamics from live time-lapse single-cell imaging data. Scientific Reports, 2021, 11, 9622.	3.3	3
5	The nucleotide addition cycle of the SARS-CoV-2 polymerase. Cell Reports, 2021, 36, 109650.	6.4	18
6	Inhibition of SARS-CoV-2 polymerase by nucleotide analogs from a single-molecule perspective. ELife, 2021, 10, .	6.0	53
7	A Chemical Strategy for Intracellular Arming of an Endogenous Broad-Spectrum Antiviral Nucleotide. Journal of Medicinal Chemistry, 2021, 64, 15429-15439.	6.4	6
8	The Stem-Loop I of Senecavirus A IRES Is Essential for Cap-Independent Translation Activity and Virus Recovery. Viruses, 2021, 13, 2159.	3.3	1
9	Induced intra- and intermolecular template switching as a therapeutic mechanism against RNA viruses. Molecular Cell, 2021, 81, 4467-4480.e7.	9.7	10
10	Single-cell analysis for the study of viral inhibitors. The Enzymes, 2021, 49, 195-213.	1.7	0
11	The ASM Journals Committee Values the Contributions of Black Microbiologists. Infection and Immunity, 2020, 88, .	2.2	0
12	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Spectrum, 2020, 8, .	3.0	0
13	Polymerase Fidelity Contributes to Foot-and-Mouth Disease Virus Pathogenicity and Transmissibility <i>In Vivo</i> . Journal of Virology, 2020, 95, .	3.4	4
14	The ASM Journals Committee Values the Contributions of Black Microbiologists. Antimicrobial Agents and Chemotherapy, 2020, 64, .	3.2	0
15	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Virology, 2020, 94, .	3.4	0
16	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Bacteriology, 2020, 202, .	2.2	0
17	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology and Molecular Biology Reviews, 2020, 84,	6.6	0
18	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Microbiology and Biology Education, 2020, 21, .	1.0	2

#	Article	IF	CITATIONS
19	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSystems, 2020, 5, .	3.8	Ο
20	The ASM Journals Committee Values the Contributions of Black Microbiologists. Microbiology Resource Announcements, 2020, 9, .	0.6	0
21	The ASM Journals Committee Values the Contributions of Black Microbiologists. MBio, 2020, 11, .	4.1	3
22	The ASM Journals Committee Values the Contributions of Black Microbiologists. Journal of Clinical Microbiology, 2020, 58, .	3.9	1
23	Viperin Reveals Its True Function. Annual Review of Virology, 2020, 7, 421-446.	6.7	76
24	Temperature controlled high-throughput magnetic tweezers show striking difference in activation energies of replicating viral RNA-dependent RNA polymerases. Nucleic Acids Research, 2020, 48, 5591-5602.	14.5	27
25	The ASM Journals Committee Values the Contributions of Black Microbiologists. Applied and Environmental Microbiology, 2020, 86, .	3.1	1
26	The ASM Journals Committee Values the Contributions of Black Microbiologists. MSphere, 2020, 5, .	2.9	1
27	The ASM Journals Committee Values the Contributions of Black Microbiologists. Molecular and Cellular Biology, 2020, 40, .	2.3	0
28	The ASM Journals Committee Values the Contributions of Black Microbiologists. Clinical Microbiology Reviews, 2020, 33, .	13.6	1
29	Rational Control of Poliovirus RNA-Dependent RNA Polymerase Fidelity by Modulating Motif-D Loop Conformational Dynamics. Biochemistry, 2019, 58, 3735-3743.	2.5	14
30	2′-C-methylated nucleotides terminate virus RNA synthesis by preventing active site closure of the viral RNA-dependent RNA polymerase. Journal of Biological Chemistry, 2019, 294, 16897-16907.	3.4	12
31	Senecavirus-Specific Recombination Assays Reveal the Intimate Link between Polymerase Fidelity and RNA Recombination. Journal of Virology, 2019, 93, .	3.4	32
32	More than efficacy revealed by single-cell analysis of antiviral therapeutics. Science Advances, 2019, 5, eaax4761.	10.3	16
33	RNA-Dependent RNA Polymerase Speed and Fidelity are not the Only Determinants of the Mechanism or Efficiency of Recombination. Genes, 2019, 10, 968.	2.4	11
34	Predicting Intraserotypic Recombination in Enterovirus 71. Journal of Virology, 2019, 93, .	3.4	32
35	Foot-and-mouth disease virus type O specific mutations determine RNA-dependent RNA polymerase fidelity and virus attenuation. Virology, 2018, 518, 87-94.	2.4	15
36	The hepatitis C viral nonstructural protein 5A stabilizes growth-regulatory human transcripts. Nucleic Acids Research, 2018, 46, 2537-2547.	14.5	8

#	Article	IF	CITATIONS
37	Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein. PLoS Pathogens, 2018, 14, e1007086.	4.7	40
38	A speed–fidelity trade-off determines the mutation rate and virulence of an RNA virus. PLoS Biology, 2018, 16, e2006459.	5.6	88
39	Discovery of Enterovirus A71-like nonstructural genomes in recent circulating viruses of the <i>Enterovirus A</i> species. Emerging Microbes and Infections, 2018, 7, 1-14.	6.5	14
40	Multiple poliovirus-induced organelles suggested by comparison of spatiotemporal dynamics of membranous structures and phosphoinositides. PLoS Pathogens, 2018, 14, e1007036.	4.7	19
41	A naturally occurring antiviral ribonucleotide encoded by the human genome. Nature, 2018, 558, 610-614.	27.8	225
42	Acoustofluidic bacteria separation. Journal of Micromechanics and Microengineering, 2017, 27, 015031.	2.6	77
43	Triphosphate Reorientation of the Incoming Nucleotide as a Fidelity Checkpoint in Viral RNA-dependent RNA Polymerases. Journal of Biological Chemistry, 2017, 292, 3810-3826.	3.4	16
44	Signatures of Nucleotide Analog Incorporation by an RNA-Dependent RNA Polymerase Revealed Using High-Throughput Magnetic Tweezers. Cell Reports, 2017, 21, 1063-1076.	6.4	59
45	Accurate nanoscale flexibility measurement of DNA and DNA–protein complexes by atomic force microscopy in liquid. Nanoscale, 2017, 9, 11327-11337.	5.6	36
46	PIP-on-a-chip: A Label-free Study of Protein-phosphoinositide Interactions. Journal of Visualized Experiments, 2017, , .	0.3	6
47	Single-Cell Virology: On-Chip Investigation of Viral Infection Dynamics. Cell Reports, 2017, 21, 1692-1704.	6.4	71
48	The RNA-Binding Site of Poliovirus 3C Protein Doubles as a Phosphoinositide-Binding Domain. Structure, 2017, 25, 1875-1886.e7.	3.3	20
49	UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication. PLoS Pathogens, 2017, 13, e1006375.	4.7	16
50	Mutagen resistance and mutation restriction of St. Louis encephalitis virus. Journal of General Virology, 2017, 98, 201-211.	2.9	22
51	Unexpected sequences and structures of mtDNA required for efficient transcription from the first heavy-strand promoter. ELife, 2017, 6, .	6.0	31
52	Long-Range Communication between Different Functional Sites in the Picornaviral 3C Protein. Structure, 2016, 24, 509-517.	3.3	10
53	Polymerase Mechanism-Based Method of Viral Attenuation. Methods in Molecular Biology, 2016, 1349, 83-104.	0.9	8
54	Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer. Oncotarget, 2016, 7, 72395-72414.	1.8	30

#	Article	IF	CITATIONS
55	Expression and Purification of Mitochondrial RNA Polymerase and Transcription Factor A from Drosophila melanogaster. Methods in Molecular Biology, 2016, 1351, 199-210.	0.9	1
56	Conformational Ensemble of the Poliovirus 3CD Precursor Observed by MD Simulations and Confirmed by SAXS: A Strategy to Expand the Viral Proteome?. Viruses, 2015, 7, 5962-5986.	3.3	13
57	Nucleobase but not Sugar Fidelity is Maintained in the Sabin I RNA-Dependent RNA Polymerase. Viruses, 2015, 7, 5571-5586.	3.3	4
58	Structural models of mammalian mitochondrial transcription factor B2. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2015, 1849, 987-1002.	1.9	5
59	Melting of Duplex DNA in the Absence of ATP by the NS3 Helicase Domain through Specific Interaction with a Single-Strand/Double-Strand Junction. Biochemistry, 2015, 54, 4248-4258.	2.5	16
60	The RNA Template Channel of the RNA-Dependent RNA Polymerase as a Target for Development of Antiviral Therapy of Multiple Genera within a Virus Family. PLoS Pathogens, 2015, 11, e1004733.	4.7	55
61	Structure-Function Analysis of Vaccinia Virus H7 Protein Reveals a Novel Phosphoinositide Binding Fold Essential for Poxvirus Replication. Journal of Virology, 2015, 89, 2209-2219.	3.4	23
62	Sequence-Specific Fidelity Alterations Associated with West Nile Virus Attenuation in Mosquitoes. PLoS Pathogens, 2015, 11, e1005009.	4.7	57
63	Computational Analysis of Amiloride Analogue Inhibitors of Coxsackie Virus B3 RNA Polymerase. Journal of Proteomics and Bioinformatics, 2014, s9, 004.	0.4	2
64	Structural Dynamics as a Contributor to Error-prone Replication by an RNA-dependent RNA Polymerase. Journal of Biological Chemistry, 2014, 289, 36229-36248.	3.4	31
65	Cytoplasmic Viral RNA-Dependent RNA Polymerase Disrupts the Intracellular Splicing Machinery by Entering the Nucleus and Interfering with Prp8. PLoS Pathogens, 2014, 10, e1004199.	4.7	50
66	RNA Virus Population Diversity, an Optimum for Maximal Fitness and Virulence. Journal of Biological Chemistry, 2014, 289, 29531-29544.	3.4	94
67	Electrochemically created highly surface roughened Ag nanoplate arrays for SERS biosensing applications. Journal of Materials Chemistry C, 2014, 2, 8350-8356.	5.5	43
68	Expanding the Proteome of an RNA Virus by Phosphorylation of an Intrinsically Disordered Viral Protein. Journal of Biological Chemistry, 2014, 289, 24397-24416.	3.4	18
69	Cystoviral Polymerase Complex Protein P7 Uses Its Acidic C-Terminal Tail to Regulate the RNA-Directed RNA Polymerase P2. Journal of Molecular Biology, 2014, 426, 2580-2593.	4.2	7
70	Vaccine-derived Mutation in Motif D of Poliovirus RNA-dependent RNA Polymerase Lowers Nucleotide Incorporation Fidelity. Journal of Biological Chemistry, 2013, 288, 32753-32765.	3.4	35
71	Sensitivity of Mitochondrial Transcription and Resistance of RNA Polymerase II Dependent Nuclear Transcription to Antiviral Ribonucleosides. PLoS Pathogens, 2012, 8, e1003030.	4.7	119
72	Transcription from the second heavy-strand promoter of human mtDNA is repressed by transcription factor A in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 6513-6518.	7.1	63

#	Article	IF	CITATIONS
73	Molecular Dynamics Simulations of Viral RNA Polymerases Link Conserved and Correlated Motions of Functional Elements to Fidelity. Journal of Molecular Biology, 2011, 410, 159-181.	4.2	79
74	Core human mitochondrial transcription apparatus is a regulated two-component system in vitro. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 12133-12138.	7.1	88
75	Identification of Multiple Rate-limiting Steps during the Human Mitochondrial Transcription Cycle in Vitro. Journal of Biological Chemistry, 2010, 285, 16387-16402.	3.4	38
76	Expanding knowledge of P3 proteins in the poliovirus lifecycle. Future Microbiology, 2010, 5, 867-881.	2.0	35
77	Viral Reorganization of the Secretory Pathway Generates Distinct Organelles for RNA Replication. Cell, 2010, 141, 799-811.	28.9	591
78	Domain II of the HCV IRES is a potent activator of PKR. FASEB Journal, 2010, 24, 653.5.	0.5	0
79	Insight into Poliovirus Genome Replication and Encapsidation Obtained from Studies of 3B-3C Cleavage Site Mutants. Journal of Virology, 2009, 83, 9370-9387.	3.4	38
80	Dynamics: the missing link between structure and function of the viral RNA-dependent RNA polymerase?. Current Opinion in Structural Biology, 2009, 19, 768-774.	5.7	45
81	Picornavirus Genome Replication. Journal of Biological Chemistry, 2008, 283, 30677-30688.	3.4	58
82	A Universal Strategy for Virus Attenuation. FASEB Journal, 2008, 22, 413.3.	0.5	0
83	What is the relationship between polymerase nuclotide incorporation rate and fidelity?. FASEB Journal, 2007, 21, A1014.	0.5	0
84	Mechanisms of action of ribavirin against distinct viruses. Reviews in Medical Virology, 2006, 16, 37-48.	8.3	428
85	Small ubiquitin-like modifying protein isopeptidase assay based on poliovirus RNA polymerase activity. Analytical Biochemistry, 2006, 350, 214-221.	2.4	33
86	Inhibition of dengue virus replication by mycophenolic acid and ribavirin. Journal of General Virology, 2006, 87, 1947-1952.	2.9	124
87	Structural and functional characterization of the coxsackievirus B3 CRE(2C): role of CRE(2C) in negative- and positive-strand RNA synthesis. Journal of General Virology, 2006, 87, 103-113.	2.9	78
88	Synthesis and Antiviral Activity of 5-Substituted Cytidine Analogues:  Identification of a Potent Inhibitor of Viral RNA-Dependent RNA Polymerases. Journal of Medicinal Chemistry, 2006, 49, 6166-6169.	6.4	42
89	ATPâ€DNA conjugates as potential helicase inhibitors. FASEB Journal, 2006, 20, LB51.	0.5	0
90	A general acid in polymerase catalyzed phosphoryl transfer reactions?. FASEB Journal, 2006, 20, .	0.5	0

#	Article	IF	CITATIONS
91	Lethal Mutagenesis: Exploiting Error-Prone Replication of Riboviruses for Antiviral Therapy. , 2005, , 203-220.		1
92	Stimulation of Poliovirus Synthesis in a HeLa Cell-Free In Vitro Translation-RNA Replication System by Viral Protein 3CD pro. Journal of Virology, 2005, 79, 6358-6367.	3.4	23
93	Incorporation fidelity of the viral RNA-dependent RNA polymerase: a kinetic, thermodynamic and structural perspective. Virus Research, 2005, 107, 141-149.	2.2	121
94	Stimulation of poliovirus RNA synthesis and virus maturation in a HeLa cell-free in vitro translation-RNA replication system by viral protein 3CDpro. Virology Journal, 2005, 2, 86.	3.4	23
95	Lethal mutagens: broad-spectrum antivirals with limited potential for development of resistance?. Drug Resistance Updates, 2004, 7, 19-24.	14.4	27
96	Purification and characterization of hepatitis C virus non-structural protein 5A expressed in Escherichia coli. Protein Expression and Purification, 2004, 37, 144-153.	1.3	63
97	Structure-Function Relationships of the RNA-dependent RNA Polymerase from Poliovirus (3Dpol). Journal of Biological Chemistry, 2002, 277, 31551-31562.	3.4	72
98	The mechanism of action of ribavirin: lethal mutagenesis of RNA virus genomes mediated by the viral RNA-dependent RNA polymerase. Current Opinion in Infectious Diseases, 2001, 14, 757-764.	3.1	121
99	Proteinase-Polymerase Precursor as the Active Form of Feline Calicivirus RNA-Dependent RNA Polymerase. Journal of Virology, 2001, 75, 1211-1219.	3.4	55
100	The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nature Medicine, 2000, 6, 1375-1379.	30.7	755
101	Poliovirus RNA-Dependent RNA Polymerase (3Dpol): Structure, Function, and Mechanism. , 0, , 255-267.		8