
Stanislav Dusko Ehrlich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6014808/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010, 464, 59-65.	27.8	9,342
2	Enterotypes of the human gut microbiome. Nature, 2011, 473, 174-180.	27.8	5,800
3	A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature, 2012, 490, 55-60.	27.8	5,345
4	Richness of human gut microbiome correlates with metabolic markers. Nature, 2013, 500, 541-546.	27.8	3,641
5	Alterations of the human gut microbiome in liver cirrhosis. Nature, 2014, 513, 59-64.	27.8	1,782
6	An integrated catalog of reference genes in the human gut microbiome. Nature Biotechnology, 2014, 32, 834-841.	17.5	1,664
7	Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature, 2015, 528, 262-266.	27.8	1,627
8	Human gut microbes impact host serum metabolome and insulin sensitivity. Nature, 2016, 535, 376-381.	27.8	1,506
9	Dietary intervention impact on gut microbial gene richness. Nature, 2013, 500, 585-588.	27.8	1,485
10	Clustered regularly interspaced short palindrome repeats (CRISPRs) have spacers of extrachromosomal origin. Microbiology (United Kingdom), 2005, 151, 2551-2561.	1.8	1,396
11	Identification and assembly of genomes and genetic elements in complex metagenomic samples without using reference genomes. Nature Biotechnology, 2014, 32, 822-828.	17.5	909
12	Genome sequence of Bacillus cereus and comparative analysis with Bacillus anthracis. Nature, 2003, 423, 87-91.	27.8	740
13	Enterotypes in the landscape of gut microbial community composition. Nature Microbiology, 2018, 3, 8-16.	13.3	717
14	A vector for systematic gene inactivation in Bacillus subtilis. Microbiology (United Kingdom), 1998, 144, 3097-3104.	1.8	620
15	Towards standards for human fecal sample processing in metagenomic studies. Nature Biotechnology, 2017, 35, 1069-1076.	17.5	581
16	Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nature Biotechnology, 2004, 22, 1554-1558.	17.5	485
17	Metagenomic species profiling using universal phylogenetic marker genes. Nature Methods, 2013, 10, 1196-1199.	19.0	442
18	A catalog of the mouse gut metagenome. Nature Biotechnology, 2015, 33, 1103-1108.	17.5	422

#	Article	IF	CITATIONS
19	Complete genome sequence of the industrial bacterium Bacillus licheniformis and comparisons with closely related Bacillus species. Genome Biology, 2004, 5, r77.	9.6	319
20	Major microbiota dysbiosis in severe obesity: fate after bariatric surgery. Gut, 2019, 68, 70-82.	12.1	297
21	New insights in the molecular biology and physiology of revealed by comparative genomics. FEMS Microbiology Reviews, 2005, 29, 435-463.	8.6	289
22	Statin therapy is associated with lower prevalence of gut microbiota dysbiosis. Nature, 2020, 581, 310-315.	27.8	283
23	Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut, 2020, 69, 1258-1268.	12.1	279
24	Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis. Genome Biology, 2017, 18, 142.	8.8	268
25	Genes Involved in Formation of Structured Multicellular Communities by <i>Bacillus subtilis</i> . Journal of Bacteriology, 2004, 186, 3970-3979.	2.2	255
26	Aberrant gut microbiota alters host metabolome and impacts renal failure in humans and rodents. Gut, 2020, 69, 2131-2142.	12.1	232
27	Changes of the human gut microbiome induced by a fermented milk product. Scientific Reports, 2014, 4, 6328.	3.3	217
28	Microbial ecology perturbation in human IgA deficiency. Science Translational Medicine, 2018, 10, .	12.4	206
29	Pleiotropic transcriptional repressor CodY senses the intracellular pool of branchedâ€chain amino acids in <i>Lactococcus lactis</i> . Molecular Microbiology, 2001, 40, 1227-1239.	2.5	198
30	Acid- and multistress-resistant mutants of Lactococcus lactis : identification of intracellular stress signals. Molecular Microbiology, 2002, 35, 517-528.	2.5	178
31	An expanded view of bacterial DNA replication. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 8342-8347.	7.1	176
32	A new mutation delivery system for genome-scale approaches in Bacillus subtilis. Molecular Microbiology, 2002, 46, 25-36.	2.5	164
33	Structurally stable Bacillus subtilis cloning vectors. Gene, 1990, 87, 53-61.	2.2	155
34	PcrA is an essential DNA helicase ofBacillus subtilisfulfilling functions both in repair and rollingâ€circle replication. Molecular Microbiology, 1998, 29, 261-273.	2.5	154
35	Low-redundancy sequencing of the entire Lactococcus lactis IL1403 genome. Antonie Van Leeuwenhoek, 1999, 76, 27-76.	1.7	153
36	Anti-Inflammatory Properties of Streptococcus salivarius, a Commensal Bacterium of the Oral Cavity and Digestive Tract. Applied and Environmental Microbiology, 2014, 80, 928-934.	3.1	151

STANISLAV DUSKO EHRLICH

#	Article	IF	CITATIONS
37	Two Essential DNA Polymerases at the Bacterial Replication Fork. Science, 2001, 294, 1716-1719.	12.6	148
38	Dietary modulation of the gut microbiota – a randomised controlled trial in obese postmenopausal women. British Journal of Nutrition, 2015, 114, 406-417.	2.3	131
39	Prediction of the intestinal resistome by a three-dimensional structure-based method. Nature Microbiology, 2019, 4, 112-123.	13.3	129
40	Overall control of nitrogen metabolism in Lactococcus lactis by CodY, and possible models for CodY regulation in Firmicutes. Microbiology (United Kingdom), 2005, 151, 3895-3909.	1.8	123
41	A Two-Protein Strategy for the Functional Loading of a Cellular Replicative DNA Helicase. Molecular Cell, 2003, 11, 1009-1020.	9.7	122
42	Multiple-Locus Sequence Typing Analysis of Bacillus cereus and Bacillus thuringiensis Reveals Separate Clustering and a Distinct Population Structure of Psychrotrophic Strains. Applied and Environmental Microbiology, 2006, 72, 1569-1578.	3.1	122
43	Imidazole propionate is increased in diabetes and associated with dietary patterns and altered microbial ecology. Nature Communications, 2020, 11, 5881.	12.8	122
44	Transcriptional Pattern of Genes Coding for the Proteolytic System of Lactococcus lactis and Evidence for Coordinated Regulation of Key Enzymes by Peptide Supply. Journal of Bacteriology, 2001, 183, 3614-3622.	2.2	120
45	In-depth resistome analysis by targeted metagenomics. Microbiome, 2018, 6, 11.	11.1	115
46	Discovery of two novel families of proteins that are proposed to interact with prokaryotic SMC proteins, and characterization of the <i>Bacillus subtilis</i> family members ScpA and ScpB. Molecular Microbiology, 2002, 45, 59-71.	2.5	112
47	Dietary Patterns Differently Associate with Inflammation and Gut Microbiota in Overweight and Obese Subjects. PLoS ONE, 2014, 9, e109434.	2.5	111
48	RuvABC-dependent double-strand breaks in dnaBts mutants require RecA. Molecular Microbiology, 2000, 38, 565-574.	2.5	110
49	The recA gene of Lactococcus lactis: characterization and involvement in oxidative and thermal stress. Molecular Microbiology, 1995, 17, 1121-1131.	2.5	109
50	Combinatorial, additive and dose-dependent drug–microbiome associations. Nature, 2021, 600, 500-505.	27.8	102
51	Microbiome and metabolome features of the cardiometabolic disease spectrum. Nature Medicine, 2022, 28, 303-314.	30.7	102
52	Replication fork collapse at replication terminator sequences. EMBO Journal, 2002, 21, 3898-3907.	7.8	98
53	An Export-Specific Reporter Designed for Gram-Positive Bacteria: Application to <i>Lactococcus lactis</i> . Journal of Bacteriology, 1998, 180, 1904-1912.	2.2	97
54	Effects of metabolic flux on stress response pathways in Lactococcus lactis. Molecular Microbiology, 1999, 31, 845-858.	2.5	96

#	Article	IF	CITATIONS
55	UvrD-dependent replication of rolling-circle plasmids in Escherichia coli. Molecular Microbiology, 2000, 35, 204-210.	2.5	92
56	DnaB, DnaD and Dnal proteins are components of the Bacillus subtilis replication restart primosome. Molecular Microbiology, 2008, 42, 245-256.	2.5	92
57	Electrotransformation of <i>Lactobacillus delbrueckii</i> subsp. <i>bulgaricus</i> and <i>L. delbrueckii</i> subsp. <i>lactis</i> with Various Plasmids. Applied and Environmental Microbiology, 2002, 68, 46-52.	3.1	90
58	Alterations in Gut Microbiome in Cirrhosis as Assessed by Quantitative Metagenomics: Relationship With Acute-on-Chronic Liver Failure and Prognosis. Gastroenterology, 2021, 160, 206-218.e13.	1.3	89
59	Inhibition of the NF-κB Pathway in Human Intestinal Epithelial Cells by Commensal Streptococcus salivarius. Applied and Environmental Microbiology, 2011, 77, 4681-4684.	3.1	88
60	Influence of H7N9 virus infection and associated treatment on human gut microbiota. Scientific Reports, 2015, 5, 14771.	3.3	88
61	Physiological Study of Lactobacillus delbrueckii subsp. bulgaricus Strains in a Novel Chemically Defined Medium. Applied and Environmental Microbiology, 2000, 66, 5306-5311.	3.1	86
62	The organization of the <i>Bacillus subtilis</i> 168 chromosome region between the <i>spoVA</i> and <i>serA</i> genetic loci, based on sequence data. Molecular Microbiology, 1993, 10, 385-395.	2.5	84
63	Replication Slippage of Different DNA Polymerases Is Inversely Related to Their Strand Displacement Efficiency. Journal of Biological Chemistry, 1999, 274, 27481-27490.	3.4	84
64	Systematic localisation of proteins fused to the green fluorescent protein inBacillus subtilis: Identification of new proteins at the DNA replication factory. Proteomics, 2006, 6, 2135-2146.	2.2	84
65	A computational framework to integrate high-throughput â€ ⁻ -omics' datasets for the identification of potential mechanistic links. Nature Protocols, 2018, 13, 2781-2800.	12.0	82
66	MSPminer: abundance-based reconstitution of microbial pan-genomes from shotgun metagenomic data. Bioinformatics, 2019, 35, 1544-1552.	4.1	82
67	Antipairing and strand transferase activities ofE.colihelicase II (UvrD). Nucleic Acids Research, 1993, 21, 3205-3209.	14.5	80
68	Early Steps of Bacillus subtilis Primosome Assembly. Journal of Biological Chemistry, 2001, 276, 45818-45825.	3.4	80
69	Bacterial protein signals are associated with Crohn's disease. Gut, 2014, 63, 1566-1577.	12.1	80
70	Lethality of rep recB and rep recC double mutants of Escherichia coli. Molecular Microbiology, 1995, 17, 1177-1188.	2.5	79
71	Compositional and functional differences of the mucosal microbiota along the intestine of healthy individuals. Scientific Reports, 2020, 10, 14977.	3.3	78
72	Combinational variation of restriction modification specificities in Lactococcus lactis. Molecular Microbiology, 2002, 28, 169-178.	2.5	74

#	Article	IF	CITATIONS
73	Metabolomic and microbiome profiling reveals personalized risk factors for coronary artery disease. Nature Medicine, 2022, 28, 295-302.	30.7	74
74	Comparative genome analysis ofBacillus cereusgroup genomes withBacillus subtilis. FEMS Microbiology Letters, 2005, 250, 175-184.	1.8	73
75	A fiveâ€nucleotide sequence protects DNA from exonucleolytic degradation by AddAB, the RecBCD analogue ofBacillus subtilis. Molecular Microbiology, 1998, 29, 1369-1377.	2.5	72
76	Resolution of Holliday junctions by RuvABC prevents dimer formation in rep mutants and UV-irradiated cells. Molecular Microbiology, 2000, 37, 180-191.	2.5	72
77	Six putative two-component regulatory systems isolated from Lactococcus lactis subsp. cremoris MC1363 The CenBank accession numbers for the sequences of the six 2CSs and surrounding ORFs determined in this work are AF172649, AF176556, AF178425, AF172650, AF176557 and AF176809 for systems A–F, respectively Microbiology (United Kingdom), 2000, 146, 935-947.	1.8	72
78	Functional Metagenomics: A High Throughput Screening Method to Decipher Microbiota-Driven NF-κB Modulation in the Human Gut. PLoS ONE, 2010, 5, e13092.	2.5	72
79	Functional interplay between the Bacillus subtilis DnaD and DnaB proteins essential for initiation and re-initiation of DNA replication. Molecular Microbiology, 2004, 55, 1138-1150.	2.5	71
80	Mining Bacillus subtilis chromosome heterogeneities using hidden Markov models. Nucleic Acids Research, 2002, 30, 1418-1426.	14.5	69
81	<i>Akkermansia muciniphila</i> abundance is lower in severe obesity, but its increased level after bariatric surgery is not associated with metabolic health improvement. American Journal of Physiology - Endocrinology and Metabolism, 2019, 317, E446-E459.	3.5	67
82	Transcription-induced deletions in Escherichia coli plasmids. Molecular Microbiology, 1995, 17, 493-504.	2.5	66
83	Molecular Diversity and Relationship within Lactococcus lactis, as revealed by Randomly Amplified Polymorphic DNA (RAPD). Systematic and Applied Microbiology, 1998, 21, 530-538.	2.8	66
84	Identification of the Chi site ofHaemophilus influenzaeas several sequences related to theEscherichia coliChi site. Molecular Microbiology, 1998, 27, 1021-1029.	2.5	65
85	MetaHIT: The European Union Project on Metagenomics of the Human Intestinal Tract. , 2011, , 307-316.		65
86	Genetic Evidence for a Link Between Glycolysis and DNA Replication. PLoS ONE, 2007, 2, e447.	2.5	64
87	Dramatic decay of phage transcripts in lactococcal cells carrying the abortive infection determinant AbiB. Molecular Microbiology, 1996, 19, 221-230.	2.5	62
88	Human intestinal metagenomics: state of the art and future. Current Opinion in Microbiology, 2013, 16, 232-239.	5.1	62
89	Replication fork reversal in DNA polymerase III mutants of Escherichia coli: a role for the β clamp. Molecular Microbiology, 2002, 44, 1331-1339.	2.5	61
90	uvrD mutations enhance tandem repeat deletion in the Escherichia coli chromosome via SOS induction of the RecF recombination pathway. Molecular Microbiology, 1997, 26, 557-567.	2.5	60

#	Article	IF	CITATIONS
91	Bacillus subtilis can modulate its capacity and specificity for protein secretion through temporally controlled expression of the sipS gene for signal peptidase I. Molecular Microbiology, 1996, 22, 605-618.	2.5	59
92	Human and preclinical studies of the host–gut microbiome co-metabolite hippurate as a marker and mediator of metabolic health. Gut, 2021, 70, 2105-2114.	12.1	58
93	Isolation of a dnaE mutation which enhances RecAâ€independent homologous recombination in the Escherichia coli chromosome. Molecular Microbiology, 1997, 24, 1225-1234.	2.5	57
94	Transcriptional interactions suggest niche segregation among microorganisms in the human gut. Nature Microbiology, 2016, 1, 16152.	13.3	56
95	Commensal Hafnia alvei strain reduces food intake and fat mass in obese mice—a new potential probiotic for appetite and body weight management. International Journal of Obesity, 2020, 44, 1041-1051.	3.4	55
96	The bacterial condensin/cohesinâ€like protein complex acts in DNA repair and regulation of gene expression. Molecular Microbiology, 2004, 51, 1629-1640.	2.5	53
97	Impairment of gut microbial biotin metabolism and host biotin status in severe obesity: effect of biotin and prebiotic supplementation on improved metabolism. Gut, 2022, 71, 2463-2480.	12.1	53
98	Expression of the <i>Staphylococcus hyicus</i> Lipase in <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2000, 66, 588-598.	3.1	52
99	Involvement of DnaE, the Second Replicative DNA Polymerase from Bacillus subtilis, in DNA Mutagenesis. Journal of Biological Chemistry, 2004, 279, 1757-1767.	3.4	52
100	Replication restart in gyrB Escherichia coli mutants. Molecular Microbiology, 2003, 48, 845-854.	2.5	51
101	Tongue Coating and the Salivary Microbial Communities Vary in Children with Halitosis. Scientific Reports, 2016, 6, 24481.	3.3	51
102	Restart of DNA replication in Gram-positive bacteria: functional characterisation of the Bacillussubtilis PriA initiator. Nucleic Acids Research, 2002, 30, 1593-1605.	14.5	50
103	Distinctive genetic features exhibited by the Yâ€family DNA polymerases in <i>Bacillus subtilis</i> . Molecular Microbiology, 2004, 54, 439-451.	2.5	50
104	A Type IC Restriction-Modification System in Lactococcus lactis. Journal of Bacteriology, 1998, 180, 407-411.	2.2	50
105	Filamentous Phage Active on the Gram-Positive Bacterium Propionibacterium freudenreichii. Journal of Bacteriology, 2002, 184, 2030-2033.	2.2	46
106	Sequencing and functional annotation of the Bacillus subtilis genes in the 200 kb rrnB-dnaB region. Microbiology (United Kingdom), 1997, 143, 3431-3441.	1.8	45
107	An Operon for a Putative ATP-Binding Cassette Transport System Involved in Acetoin Utilization of <i>Bacillus subtilis</i> . Journal of Bacteriology, 2000, 182, 5454-5461.	2.2	45
108	DNA polymerase I acts in translesion synthesis mediated by the Y-polymerases in Bacillus subtilis. Molecular Microbiology, 2005, 57, 678-690.	2.5	44

STANISLAV DUSKO EHRLICH

#	Article	IF	CITATIONS
109	Disruption of the sole IdhL gene in Lactobacillus sakei prevents the production of both L- and D-lactate. Microbiology (United Kingdom), 1998, 144, 3327-3333.	1.8	43
110	Primosome assembly requirement for replication restart in the Escherichia coli holDG10 replication mutant. Molecular Microbiology, 2002, 44, 783-792.	2.5	43
111	The Genetically Remote Pathogenic Strain NVH391-98 of the <i>Bacillus cereus</i> Group Is Representative of a Cluster of Thermophilic Strains. Applied and Environmental Microbiology, 2008, 74, 1276-1280.	3.1	41
112	sbcB sbcC null mutations allow RecF-mediated repair of arrested replication forks in rep recBC mutants. Molecular Microbiology, 1999, 33, 846-857.	2.5	40
113	Requirement for RecFOR-mediated recombination in priA mutant. Molecular Microbiology, 2004, 52, 551-562.	2.5	39
114	KSY1, a lactococcal phage with a T7-like transcription. Virology, 2007, 365, 1-9.	2.4	39
115	Conservation of key elements of natural competence inLactococcus lactisssp FEMS Microbiology Letters, 2006, 257, 32-42.	1.8	37
116	Probiotics $\hat{a} \in \hat{a}$ little evidence for a link to obesity. Nature Reviews Microbiology, 2009, 7, 901-901.	28.6	37
117	Lactococcus lactis phage operon coding for an endonuclease homologous to RuvC. Molecular Microbiology, 2002, 28, 823-834.	2.5	35
118	The Peptidyl-Prolyl Isomerase Motif Is Lacking in PmpA, the PrsA-Like Protein Involved in the Secretion Machinery of <i>Lactococcus lactis</i> . Applied and Environmental Microbiology, 2002, 68, 3932-3942.	3.1	34
119	Two distinct types of rRNA operons in the Bacillus cereus group. Microbiology (United Kingdom), 2004, 150, 601-611.	1.8	33
120	Transcriptional analysis of the cyclopropane fatty acid synthase gene ofLactococcus lactisMG1363 at low pH. FEMS Microbiology Letters, 2005, 250, 189-194.	1.8	33
121	The transcriptional organization of the <i>Bacillus subtilis</i> 168 chromosome region between the <i>spoVAF and serA</i> genetic loci. Molecular Microbiology, 1993, 10, 397-405.	2.5	32
122	The kdgRKAT operon of Bacillus subtilis:detection of the transcript and regulation by the kdgR and ccpA genes. Microbiology (United Kingdom), 1998, 144, 3111-3118.	1.8	32
123	The Lactococcal Abortive Phage Infection System AbiP Prevents both Phage DNA Replication and Temporal Transcription Switch. Journal of Bacteriology, 2004, 186, 713-721.	2.2	32
124	P087, a lactococcal phage with a morphogenesis module similar to an Enterococcus faecalis prophage. Virology, 2009, 388, 49-56.	2.4	31
125	Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract. BMC Evolutionary Biology, 2007, 7, 141.	3.2	29
126	The human gut microbiome impacts health and disease. Comptes Rendus - Biologies, 2016, 339, 319-323.	0.2	28

#	Article	IF	CITATIONS
127	Increasing the diversity of dietary fibers in a daily-consumed bread modifies gut microbiota and metabolic profile in subjects at cardiometabolic risk. Gut Microbes, 2022, 14, 2044722.	9.8	28
128	tRNATrpas a key element of antitermination in theLactococcus lactis trpoperon. Molecular Microbiology, 1998, 29, 61-74.	2.5	27
129	Transcription-driven DNA replication of plasmid pAMβ1 inBacillus subtilis. Molecular Microbiology, 1998, 30, 135-145.	2.5	27
130	The RepE Initiator Is a Double-stranded and Single-stranded DNA-binding Protein That Forms an Atypical Open Complex at the Onset of Replication of Plasmid pAMβ1 from Gram-positive Bacteria. Journal of Biological Chemistry, 2001, 276, 10234-10246.	3.4	27
131	The Bacillus subtilis dnal gene is part of the dnaB operon. Microbiology (United Kingdom), 1995, 141, 1199-1200.	1.8	26
132	Activation of mRNA translation by phage protein and low temperature: the case of Lactococcus lactis abortive infection system AbiD1. BMC Molecular Biology, 2009, 10, 4.	3.0	25
133	Dissemination of the mcr-1 colistin resistance gene. Lancet Infectious Diseases, The, 2016, 16, 290-291.	9.1	24
134	Hypersecretion of a Cellulase from Clostridium thermocellum in Bacillus subtilis by Induction of Chromosomal DNA Amplification. Nature Biotechnology, 1990, 8, 559-563.	17.5	23
135	Analysis of the Bacillus subtilis genome sequence reveals nine new Tâ€box leaders. Molecular Microbiology, 1998, 29, 662-664.	2.5	23
136	Co-linear scaffold of theBacillus licheniformisandBacillus subtilisgenomes and its use to compare their competence genes. FEMS Microbiology Letters, 2002, 209, 23-30.	1.8	23
137	Quality control of microbiota metagenomics by k-mer analysis. BMC Genomics, 2015, 16, 183.	2.8	22
138	Sequence of the Bacillus subtilis genome region in the vicinity of the lev operon reveals two new extracytoplasmic function RNA polymerase sigma factors SigV and SigZ. Microbiology (United) Tj ETQqO 0 0 rgB	Г / Qs erlocl	۲f 50 29 د
139	Transcriptional and Translational Regulation of $\hat{i}\pm$ -Acetolactate Decarboxylase of Lactococcus lactis subsp. lactis. Journal of Bacteriology, 2000, 182, 5399-5408.	2.2	20
140	The beta-propeller protein YxaL increases the processivity of the PcrA helicase. Molecular Genetics and Genomics, 2002, 267, 391-400.	2.1	20
141	Inhibition of a naturally occurring rollingâ€circle replicon in derivatives of the thetaâ€replicating plasmid plP501. Molecular Microbiology, 1998, 29, 709-718.	2.5	18
142	A distinct single-stranded DNA-binding protein encoded by the Lactococcus lactis bacteriophage bIL67. Virology, 2007, 363, 104-112.	2.4	17
143	Lactococcus lactisAbiD1 abortive infection efficiency is drastically increased by a phage protein. FEMS Microbiology Letters, 2002, 214, 283-287.	1.8	16
144	PriA Is Essential for Viability of the Escherichia coli Topoisomerase IV parE10 (Ts) Mutant. Journal of Bacteriology, 2004, 186, 1197-1199.	2.2	16

STANISLAV DUSKO EHRLICH

#	Article	IF	CITATIONS
145	Replication mutations differentially enhance RecA-dependent and RecA-independent recombination between tandem repeats in Bacillus subtilis. Molecular Microbiology, 2004, 39, 1248-1258.	2.5	16
146	The lactococcal abortive infection protein AbiP is membrane-anchored and binds nucleic acids. Virology, 2008, 373, 14-24.	2.4	16
147	Transcription of the trp operon in Lactococcus lactis is controlled by antitermination in the leader region. Microbiology (United Kingdom), 1998, 144, 2103-2111.	1.8	15
148	Viability of rep recA Mutants Depends on Their Capacity To Cope with Spontaneous Oxidative Damage and on the DnaK Chaperone Protein. Journal of Bacteriology, 2001, 183, 2165-2171.	2.2	15
149	csp-like genes ofLactobacillus delbrueckiissp.bulgaricusand their response to cold shock. FEMS Microbiology Letters, 2003, 226, 323-330.	1.8	15
150	Transposition in Lactobacillus delbrueckii subsp. bulgaricus: identification of two thermosensitive replicons and two functional insertion sequences. Microbiology (United Kingdom), 2003, 149, 1503-1511.	1.8	13
151	A Phage Protein Confers Resistance to the Lactococcal Abortive Infection Mechanism AbiP. Journal of Bacteriology, 2004, 186, 3278-3281.	2.2	13
152	Effect of Genome and Environment on Metabolic and Inflammatory Profiles. PLoS ONE, 2015, 10, e0120898.	2.5	13
153	The replicative polymerases PolC and DnaE are required for theta replication of the Bacillus subtilis plasmid pBS72. Microbiology (United Kingdom), 2006, 152, 1471-1478.	1.8	12
154	Rapid species identification within two groups of closely related lactobacilli using PCR primers that target the 16S/23S rRNA spacer region. FEMS Microbiology Letters, 1998, 161, 97-106.	1.8	12
155	Thetaâ€ŧype DNA replication stimulates homologous recombination in the Bacillus subtilis chromosome. Molecular Microbiology, 1996, 19, 587-598.	2.5	11
156	Identification by PCR of genes encoding multiple response regulators. Microbiology (United Kingdom), 1997, 143, 1513-1520.	1.8	10
157	Identity elements in tRNA-mediated transcription antitermination: implication of tRNA D- and T-arms in mRNA recognition. Microbiology (United Kingdom), 2001, 147, 1223-1233.	1.8	9
158	Studies of genomes of dairy bacteria <i>Lactococcus lactis</i> . Sciences Des Aliments, 2002, 22, 45-53.	0.2	9
159	Recombination-dependent Repair of DNA Double-strand Breaks with Purified Proteins from Escherichia coli. Journal of Biological Chemistry, 1997, 272, 17091-17096.	3.4	8
160	Development of Software Facilities to Characterize Regulatory Binding Motifs and Application to Streptococcaceae. Journal of Molecular Microbiology and Biotechnology, 2008, 14, 67-73.	1.0	8
161	Conjugated C-6 hydroxylated bile acids in serum relate to human metabolic health and gut Clostridia species. Scientific Reports, 2021, 11, 13252.	3.3	8
162	Blocking rolling circle replication with a UV lesion creates a deletion hotspot. Molecular Microbiology, 1997, 26, 569-580.	2.5	5

#	Article	IF	CITATIONS
163	The 409 bp tandem repeat spanning genes yxaK and yxaL is absent from the Bacillus subtilis chromosome. Microbiology (United Kingdom), 2000, 146, 2091-2092.	1.8	4
164	Genomics. Current Opinion in Microbiology, 2003, 6, 479-481.	5.1	3
165	Qin et al. reply. Nature, 2015, 525, E2-E3.	27.8	3
166	Effect of a <i>guaA</i> mutation on the acid tolerance of <i>L. lactis</i> . Sciences Des Aliments, 2002, 22, 67-74.	0.2	3
167	A Study of the CopF Repressor of Plasmid pAMβ1 by Phage Display. Journal of Bacteriology, 2000, 182, 2973-2977.	2.2	2
168	Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis, 2000, 21, 2557-2561.	2.4	2
169	Evaluation de la diversité de l'expression génétique chez les lactocoques : développement d'un outil et son application aux peptidases. Sciences Des Aliments, 2000, 20, 55-62.	0.2	2
170	Analysis of the Bacillus subtilis genome sequence reveals nine new T-box leaders. Molecular Microbiology, 1999, 31, 1010-1011.	2.5	0
171	Les lactocoques comme vecteurs pour libérer des protéines dans le duodénum : application au traitement des déficiences pancréatiques en lipase. Sciences Des Aliments, 2000, 20, 127-133.	0.2	0