
Vanessa R Simmering

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6012797/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Inconsistent flanker congruency effects across stimulus types and age groups: A cautionary tale. Behavior Research Methods, 2023, 55, 1778-1817.	4.0	2
2	Examining the role of external language support and children's own language use in spatial development. Journal of Experimental Child Psychology, 2022, 215, 105317.	1.4	2
3	Modulation of compatibility effects in response to experience: Two tests of initial and sequential learning. Attention, Perception, and Psychophysics, 2021, 83, 837-852.	1.3	4
4	A Dynamical Reconceptualization of Executive-Function Development. Perspectives on Psychological Science, 2021, 16, 1198-1208.	9.0	27
5	Using eye-tracking to understand relations between visual attention and language in children's spatial skills. Cognitive Psychology, 2020, 117, 101264.	2.2	5
6	Speech and Gesture Production Provide Unique Insights Into Young Children's Spatial Reasoning. Child Development, 2020, 91, 1934-1952.	3.0	10
7	Load effects in attention: Comparing tasks and age groups. Attention, Perception, and Psychophysics, 2020, 82, 3072-3084.	1.3	5
8	Imagine: Design for Creative Thinking, Learning, and Assessment in Schools. Journal of Intelligence, 2020, 8, 16.	2.5	10
9	What Technology Can and Cannot Do to Support Assessment of Non-cognitive Skills. Frontiers in Psychology, 2019, 10, 2168.	2.1	3
10	Connecting the Dots: Finding Continuity Across Visuospatial Tasks and Development. Frontiers in Psychology, 2019, 10, 1685.	2.1	2
11	Fluid intelligence is related to capacity in memory as well as attention: Evidence from middle childhood and adulthood. PLoS ONE, 2019, 14, e0221353.	2.5	21
12	Understanding Test Takers' Choices in a Self-Adapted Test: A Hidden Markov Modeling of Process Data. Frontiers in Psychology, 2019, 10, 83.	2.1	8
13	Children's attention to task-relevant information accounts for relations between language and spatial cognition. Journal of Experimental Child Psychology, 2018, 172, 107-129.	1.4	19
14	Producing Spatial Words Is Not Enough: Understanding the Relation Between Language and Spatial Cognition. Child Development, 2017, 88, 1966-1982.	3.0	24
15	Applications of Dynamic Systems Theory to Cognition and Development. Advances in Child Development and Behavior, 2017, 52, 43-80.	1.3	40
16	The development of real-time stability supports visual working memory performance: Young children's feature binding can be improved through perceptual structure Developmental Psychology, 2017, 53, 1474-1493.	1.6	7
17	I. WORKING MEMORY CAPACITY IN CONTEXT: MODELING DYNAMIC PROCESSES OF BEHAVIOR, MEMORY, AND DEVELOPMENT. Monographs of the Society for Research in Child Development, 2016, 81, 7-24.	6.8	40
18	II. THE COGNITIVE DYNAMICS THEORY OF VISUAL WORKING MEMORY. Monographs of the Society for Research in Child Development, 2016, 81, 25-55.	6.8	2

#	Article	IF	CITATIONS
19	V. NEW QUESTIONS AND REMAINING CHALLENGES TO ACCOUNT FOR DEVELOPMENTAL IMPROVEMENTS IN VISUAL WORKING MEMORY. Monographs of the Society for Research in Child Development, 2016, 81, 109-127.	6.8	0
20	III. EMPIRICAL TESTS OF PREDICTIONS COMPARING CAPACITY ESTIMATES ACROSS TASKS AND DEVELOPMENT. Monographs of the Society for Research in Child Development, 2016, 81, 56-81.	6.8	1
21	IV. MODEL SIMULATIONS TESTING THE REAL-TIME STABILITY HYPOTHESIS OF DEVELOPMENTAL CHANGES IN VISUAL WORKING MEMORY. Monographs of the Society for Research in Child Development, 2016, 81, 82-108.	6.8	0
22	Developmental improvements in the resolution and capacity of visual working memory share a common source. Attention, Perception, and Psychophysics, 2016, 78, 1538-1555.	1.3	12
23	Language supports young children's use of spatial relations to remember locations. Cognition, 2016, 150, 170-180.	2.2	27
24	Different developmental trajectories across feature types support a dynamic field model of visual working memory development. Attention, Perception, and Psychophysics, 2015, 77, 1170-1188.	1.3	18
25	Category learning in a dynamic world. Frontiers in Psychology, 2015, 6, 46.	2.1	11
26	Integrating Perception and Working Memory in a Three-Layer Dynamic Field Model. , 2015, , 151-168.		2
27	Developmental Dynamics. , 2015, , 251-270.		5
28	Beyond slots and resources: Grounding cognitive concepts in neural dynamics. Attention, Perception, and Psychophysics, 2014, 76, 1630-1654.	1.3	31
29	The development of visual working memory capacity during early childhood. Journal of Experimental Child Psychology, 2012, 111, 695-707.	1.4	118
30	Models provide specificity: Testing a proposed mechanism of visual working memory capacity development. Cognitive Development, 2012, 27, 419-439.	1.3	17
31	Working Memory Capacity as a Dynamic Process. Frontiers in Psychology, 2012, 3, 567.	2.1	54
32	Stronger neural dynamics capture changes in infants' visual working memory capacity over development. Developmental Science, 2011, 14, 1379-1392.	2.4	42
33	Keeping Behavior in Context: A Dynamic Systems Account of a Transition in Spatial Recall Biases. Spatial Cognition and Computation, 2011, 11, 313-342.	1.2	9
34	The role of experience in location estimation: Target distributions shift location memory biases. Cognition, 2010, 115, 147-153.	2.2	24
35	A Dialogue on the Role of Computational Modeling in Developmental Science. Child Development Perspectives, 2010, 4, 152-158.	3.9	12
36	Generality with specificity: the dynamic field theory generalizes across tasks and time scales. Developmental Science, 2008, 11, 541-555.	2.4	32

#	Article	IF	CITATIONS
37	Generalizing the dynamic field theory of spatial cognition across real and developmental time scales. Brain Research, 2008, 1202, 68-86.	2.2	86
38	Location memory biases reveal the challenges of coordinating visual and kinesthetic reference frames. Experimental Brain Research, 2007, 184, 165-178.	1.5	10
39	Carving up space at imaginary joints: Can people mentally impose arbitrary spatial category boundaries?. Journal of Experimental Psychology: Human Perception and Performance, 2007, 33, 871-894.	0.9	27
40	What Does Theoretical Neuroscience Have to Offer the Study of Behavioral Development?. , 2007, , 320-361.		53
41	Toward a formal theory of flexible spatial behavior: Geometric category biases generalize across pointing and verbal response types Journal of Experimental Psychology: Human Perception and Performance, 2006, 32, 473-490.	0.9	45
42	Reference-related inhibition produces enhanced position discrimination and fast repulsion near axes of symmetry. Perception & Psychophysics, 2006, 68, 1027-1046.	2.3	41