Xiao-Peng Han

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6012102/publications.pdf

Version: 2024-02-01

193 papers 17,944 citations

73 h-index

9786

128 g-index

203 all docs $\begin{array}{c} 203 \\ \\ \text{docs citations} \end{array}$

203 times ranked 15727 citing authors

#	Article	IF	CITATIONS
1	Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chemical Society Reviews, 2015, 44, 699-728.	38.1	740
2	Enhancing Electrocatalytic Oxygen Reduction on MnO ₂ with Vacancies. Angewandte Chemie - International Edition, 2013, 52, 2474-2477.	13.8	623
3	Atomically Dispersed Binary Coâ€Ni Sites in Nitrogenâ€Doped Hollow Carbon Nanocubes for Reversible Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1905622.	21.0	537
4	Phase and composition controllable synthesis of cobalt manganese spinel nanoparticles towards efficient oxygen electrocatalysis. Nature Communications, 2015, 6, 7345.	12.8	500
5	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie - International Edition, 2019, 58, 5359-5364.	13.8	500
6	Decoupling electrolytes towards stable and high-energy rechargeable aqueous zinc–manganese dioxide batteries. Nature Energy, 2020, 5, 440-449.	39.5	430
7	Unique Cobalt Sulfide/Reduced Graphene Oxide Composite as an Anode for Sodiumâ€lon Batteries with Superior Rate Capability and Long Cycling Stability. Small, 2016, 12, 1359-1368.	10.0	423
8	Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER. Advanced Materials, 2018, 30, e1800005.	21.0	394
9	NiCo 2 S 4 nanocrystals anchored on nitrogen-doped carbon nanotubes as a highly efficient bifunctional electrocatalyst for rechargeable zinc-air batteries. Nano Energy, 2017, 31, 541-550.	16.0	365
10	Thicknessâ€Dependent Facet Junction Control of Layered BiOlO ₃ Single Crystals for Highly Efficient CO ₂ Photoreduction. Advanced Functional Materials, 2018, 28, 1804284.	14.9	358
11	3D Porous γâ€Fe ₂ O ₃ @C Nanocomposite as Highâ€Performance Anode Material of Naâ€Ion Batteries. Advanced Energy Materials, 2015, 5, 1401123.	19.5	320
12	Identifying the Activation of Bimetallic Sites in NiCo ₂ 5 ₄ 6€NT Hybrid Electrocatalysts for Synergistic Oxygen Reduction and Evolution. Advanced Materials, 2019, 31, e1808281.	21.0	315
13	Ultrathin Co ₃ O ₄ Layers with Large Contact Area on Carbon Fibers as Highâ€Performance Electrode for Flexible Zinc–Air Battery Integrated with Flexible Display. Advanced Energy Materials, 2017, 7, 1700779.	19.5	309
14	Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries. Advanced Materials, 2018, 30, 1703657.	21.0	302
15	Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting. Advanced Energy Materials, 2018, 8, 1800935.	19.5	286
16	Phase and composition controlled synthesis of cobalt sulfide hollow nanospheres for electrocatalytic water splitting. Nanoscale, 2018, 10, 4816-4824.	5.6	256
17	Cobalt Sulfide Nanosheet/Graphene/Carbon Nanotube Nanocomposites as Flexible Electrodes for Hydrogen Evolution. Angewandte Chemie - International Edition, 2014, 53, 12594-12599.	13.8	252
18	Identifying Dense NiSe ₂ /CoSe ₂ Heterointerfaces Coupled with Surface Highâ€Valence Bimetallic Sites for Synergistically Enhanced Oxygen Electrocatalysis. Advanced Materials, 2020, 32, e2000607.	21.0	251

#	Article	IF	CITATIONS
19	Dualâ€Sites Coordination Engineering of Single Atom Catalysts for Flexible Metal–Air Batteries. Advanced Energy Materials, 2021, 11, 2101242.	19.5	247
20	Hydrogenated Uniform Pt Clusters Supported on Porous CaMnO ₃ as a Bifunctional Electrocatalyst for Enhanced Oxygen Reduction and Evolution. Advanced Materials, 2014, 26, 2047-2051.	21.0	244
21	Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis. Advanced Energy Materials, 2018, 8, 1702222.	19.5	243
22	Electronic and Defective Engineering of Electrospun CaMnO ₃ Nanotubes for Enhanced Oxygen Electrocatalysis in Rechargeable Zinc–Air Batteries. Advanced Energy Materials, 2018, 8, 1800612.	19.5	234
23	Porous nanocomposite gel polymer electrolyte with high ionic conductivity and superior electrolyte retention capability for long-cycle-life flexible zinc–air batteries. Nano Energy, 2019, 56, 454-462.	16.0	212
24	Sequential Electrodeposition of Bifunctional Catalytically Active Structures in MoO ₃ /Ni–NiO Composite Electrocatalysts for Selective Hydrogen and Oxygen Evolution. Advanced Materials, 2020, 32, e2003414.	21.0	206
25	Ternary doped porous carbon nanofibers with excellent ORR and OER performance for zinc–air batteries. Journal of Materials Chemistry A, 2018, 6, 10918-10925.	10.3	199
26	Utilizing solar energy to improve the oxygen evolution reaction kinetics in zinc–air battery. Nature Communications, 2019, 10, 4767.	12.8	199
27	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 7245-7250.	13.8	196
28	A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier. Advanced Materials, 2020, 32, e1908127.	21.0	172
29	Spherical nano-Sb@C composite as a high-rate and ultra-stable anode material for sodium-ion batteries. Nano Research, 2015, 8, 3384-3393.	10.4	165
30	Porous calcium–manganese oxide microspheres for electrocatalytic oxygen reduction with high activity. Chemical Science, 2013, 4, 368-376.	7.4	164
31	Nitrogen, Fluorine, and Boron Ternary Doped Carbon Fibers as Cathode Electrocatalysts for Zinc–Air Batteries. Small, 2018, 14, e1800737.	10.0	159
32	Latticeâ€Strain Engineering of Homogeneous NiS _{0.5} Se _{0.5} Coreâ€"Shell Nanostructure as a Highly Efficient and Robust Electrocatalyst for Overall Water Splitting. Advanced Materials, 2020, 32, e2000231.	21.0	158
33	Electrodeposition of metals and alloys from ionic liquids. Journal of Alloys and Compounds, 2016, 654, 163-170.	5.5	156
34	Metal–Air Batteries: From Static to Flow System. Advanced Energy Materials, 2018, 8, 1801396.	19.5	156
35	Morphology-Controllable Synthesis of Zn–Co-Mixed Sulfide Nanostructures on Carbon Fiber Paper Toward Efficient Rechargeable Zinc–Air Batteries and Water Electrolysis. ACS Applied Materials & Interfaces, 2017, 9, 12574-12583.	8.0	154
36	Controllable synthesis of nickel sulfide nanocatalysts and their phase-dependent performance for overall water splitting. Nanoscale, 2019, 11, 5646-5654.	5.6	148

3

#	Article	IF	CITATIONS
37	Dislocationâ€Strained IrNi Alloy Nanoparticles Driven by Thermal Shock for the Hydrogen Evolution Reaction. Advanced Materials, 2020, 32, e2006034.	21.0	148
38	Battery Technologies for Grid-Level Large-Scale Electrical Energy Storage. Transactions of Tianjin University, 2020, 26, 92-103.	6.4	146
39	Ferroelectric polarization promoted bulk charge separation for highly efficient CO2 photoreduction of SrBi4Ti4O15. Nano Energy, 2019, 56, 840-850.	16.0	144
40	Porous perovskite CaMnO3as an electrocatalyst for rechargeable Li–O2batteries. Chemical Communications, 2014, 50, 1497-1499.	4.1	140
41	Latticeâ€Matching Formed Mesoporous Transition Metal Oxide Heterostructures Advance Water Splitting by Active Fe–O–Cu Bridges. Advanced Energy Materials, 2022, 12, .	19.5	139
42	Highly Active and Durable Singleâ€Atom Tungstenâ€Doped NiS _{0.5} Se _{0.5} Nanosheet @ NiS _{0.5} Se _{0.5} Nanorod Heterostructures for Water Splitting. Advanced Materials, 2022, 34, e2107053.	21.0	136
43	Pitaya-like Sn@C nanocomposites as high-rate and long-life anode for lithium-ion batteries. Nanoscale, 2014, 6, 2827-2832.	5.6	133
44	Subâ€2 nm Thiophosphate Nanosheets with Heteroatom Doping for Enhanced Oxygen Electrocatalysis. Advanced Functional Materials, 2021, 31, 2100618.	14.9	133
45	Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd \$ar 3\$ m). Nano Research, 2013, 6, 679-687.	10.4	126
46	Clarifying the Controversial Catalytic Performance of Co(OH) ₂ and Co ₃ O ₄ for Oxygen Reduction/Evolution Reactions toward Efficient Zn–Air Batteries. ACS Applied Materials & Date (Interfaces), 2017, 9, 22694-22703.	8.0	121
47	Electrochemical approach to prepare integrated air electrodes for highly stretchable zinc-air battery array with tunable output voltage and current for wearable electronics. Nano Energy, 2017, 39, 101-110.	16.0	120
48	Engineering Co ₉ S ₈ /WS ₂ array films as bifunctional electrocatalysts for efficient water splitting. Journal of Materials Chemistry A, 2017, 5, 23361-23368.	10.3	117
49	Controllable Synthesis of Ni _{<i>x</i>} Se (0.5 ≤i>x ≤) Nanocrystals for Efficient Rechargeable Zinc–Air Batteries and Water Splitting. ACS Applied Materials & Diterfaces, 2018, 10, 13675-13684.	8.0	116
50	ĵµ-MnO2 nanostructures directly grown on Ni foam: a cathode catalyst for rechargeable Li–O2 batteries. Nanoscale, 2014, 6, 3522.	5.6	112
51	Recycling Application of Li–MnO ₂ Batteries as Rechargeable Lithium–Air Batteries. Angewandte Chemie - International Edition, 2015, 54, 4338-4343.	13.8	109
52	Generation of Nanoparticle, Atomicâ€Cluster, and Singleâ€Atom Cobalt Catalysts from Zeolitic Imidazole Frameworks by Spatial Isolation and Their Use in Zinc–Air Batteries. Angewandte Chemie, 2019, 131, 5413-5418.	2.0	106
53	NiO-induced synthesis of PdNi bimetallic hollow nanocrystals with enhanced electrocatalytic activities toward ethanol and formic acid oxidation. Nano Energy, 2017, 42, 353-362.	16.0	104
54	Encapsulating Cobalt Nanoparticles in Interconnected Nâ€Doped Hollow Carbon Nanofibers with Enriched Coï₺¿Nï₺¿C Moiety for Enhanced Oxygen Electrocatalysis in Znâ€Air Batteries. Advanced Science, 2021, 8, e2101438.	11.2	104

#	Article	IF	Citations
55	In Situ Fabrication of Heterostructure on Nickel Foam with Tuned Composition for Enhancing Waterâ€Splitting Performance. Small, 2018, 14, e1803666.	10.0	100
56	Oxygen Bubble-Templated Hierarchical Porous ε-MnO ₂ as a Superior Catalyst for Rechargeable Li-O ₂ Batteries. Small, 2015, 11, 809-813.	10.0	90
57	Ultrathin Co ₃ O ₄ nanofilm as an efficient bifunctional catalyst for oxygen evolution and reduction reaction in rechargeable zinc–air batteries. Nanoscale, 2017, 9, 8623-8630.	5.6	90
58	Porous perovskite calcium–manganese oxide microspheres as an efficient catalyst for rechargeable sodium–oxygen batteries. Journal of Materials Chemistry A, 2015, 3, 3320-3324.	10.3	86
59	Engineering the Surface Metal Active Sites of Nickel Cobalt Oxide Nanoplates toward Enhanced Oxygen Electrocatalysis for Zn–Air Battery. ACS Applied Materials & Samp; Interfaces, 2019, 11, 4915-4921.	8.0	84
60	Pt-Decorated highly porous flower-like Ni particles with high mass activity for ammonia electro-oxidation. Journal of Materials Chemistry A, 2016, 4, 11060-11068.	10.3	83
61	Boosting Energy Efficiency and Stability of Li–CO ₂ Batteries via Synergy between Ru Atom Clusters and Singleâ€Atom Ru–N ₄ sites in the Electrocatalyst Cathode. Advanced Materials, 2022, 34, e2200559.	21.0	83
62	Acceptorâ€Doping Accelerated Charge Separation in Cu ₂ O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie - International Edition, 2020, 59, 18463-18467.	13.8	82
63	Carbonâ€based cathode materials for rechargeable zincâ€air batteries: From current collectors to bifunctional integrated air electrodes. , 2020, 2, 370-386.		82
64	Long-Shelf-Life Polymer Electrolyte Based on Tetraethylammonium Hydroxide for Flexible Zinc–Air Batteries. ACS Applied Materials & Diterfaces, 2019, 11, 28909-28917.	8.0	81
65	Inversely Tuning the CO ₂ Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. Angewandte Chemie - International Edition, 2021, 60, 7602-7606.	13.8	81
66	Size effect of lithium peroxide on charging performance of Li–O ₂ batteries. Nanoscale, 2014, 6, 177-180.	5.6	80
67	Isolated Platinum Atoms Stabilized by Amorphous Tungstenic Acid: Metal–Support Interaction for Synergistic Oxygen Activation. Angewandte Chemie - International Edition, 2018, 57, 9351-9356.	13.8	80
68	Atomically Dispersed Selenium Sites on Nitrogenâ€Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Angewandte Chemie - International Edition, 2022, 61, .	13.8	80
69	Electrochemical Oxidation of Chlorine-Doped Co(OH) ₂ Nanosheet Arrays on Carbon Cloth as a Bifunctional Oxygen Electrode. ACS Applied Materials & Interfaces, 2018, 10, 796-805.	8.0	79
70	Micronanostructured Design of Dendriteâ€Free Zinc Anodes and Their Applications in Aqueous Zincâ€Based Rechargeable Batteries. Small Structures, 2021, 2, 2000128.	12.0	79
71	Heterointerface Engineering of Hierarchically Assembling Layered Double Hydroxides on Cobalt Selenide as Efficient Trifunctional Electrocatalysts for Water Splitting and Zincâ€Air Battery. Advanced Science, 2022, 9, e2104522.	11.2	79
72	Facile solvothermal synthesis of CaMn2O4 nanorods for electrochemical oxygen reduction. Journal of Materials Chemistry, 2012, 22, 15812.	6.7	76

#	Article	IF	Citations
73	Nanosheets assembled into nickel sulfide nanospheres with enriched Ni ³⁺ active sites for efficient water-splitting and zinc–air batteries. Journal of Materials Chemistry A, 2019, 7, 23787-23793.	10.3	76
74	A review of non-noble metal-based electrocatalysts for CO2 electroreduction. Rare Metals, 2021, 40, 3019.	7.1	74
75	Rational Design and Spontaneous Sulfurization of NiCoâ€(oxy)Hydroxysulfides Nanosheets with Modulated Local Electronic Configuration for Enhancing Oxygen Electrocatalysis. Advanced Energy Materials, 2022, 12, .	19.5	74
76	Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation. Advanced Energy Materials, 2019, 9, 1900955.	19.5	72
77	Chemical etching of manganese oxides for electrocatalytic oxygen reduction reaction. Chemical Communications, 2015, 51, 11599-11602.	4.1	71
78	Enhanced light harvesting and electron-hole separation for efficient photocatalytic hydrogen evolution over Cu7S4-enwrapped Cu2O nanocubes. Applied Catalysis B: Environmental, 2019, 246, 202-210.	20.2	71
79	Low-temperature strategy toward Ni-NC@Ni core-shell nanostructure with Single-Ni sites for efficient CO2 electroreduction. Nano Energy, 2020, 77, 105010.	16.0	70
80	In Situ Electrodeposition of Cobalt Sulfide Nanosheet Arrays on Carbon Cloth as a Highly Efficient Bifunctional Electrocatalyst for Oxygen Evolution and Reduction Reactions. ACS Applied Materials & Samp; Interfaces, 2018, 10, 30433-30440.	8.0	69
81	Atomic Layer Co ₃ O ₄ Nanosheets: The Key to Knittable Zn–Air Batteries. Small, 2018, 14, e1702987.	10.0	68
82	Uniform MnO2 nanostructures supported on hierarchically porous carbon as efficient electrocatalysts for rechargeable Li-O2 batteries. Nano Research, 2015, 8, 156-164.	10.4	65
83	Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries. Advanced Materials, 2021, 33, e2006461.	21.0	63
84	Long-battery-life flexible zinc–air battery with near-neutral polymer electrolyte and nanoporous integrated air electrode. Journal of Materials Chemistry A, 2019, 7, 25449-25457.	10.3	61
85	Thermal Shock-Activated Spontaneous Growing of Nanosheets for Overall Water Splitting. Nano-Micro Letters, 2020, 12, 162.	27.0	59
86	A Co ₃ O ₄ @MnO ₂ /Ni nanocomposite as a carbon- and binder-free cathode for rechargeable Li–O ₂ batteries. Inorganic Chemistry Frontiers, 2016, 3, 866-871.	6.0	58
87	Nanocomposite of Fe ₂ O ₃ @C@MnO ₂ as an Efficient Cathode Catalyst for Rechargeable Lithiumâ^'Oxygen Batteries. Small, 2015, 11, 5545-5550.	10.0	57
88	Electrodeposition of alloys and compounds from high-temperature molten salts. Journal of Alloys and Compounds, 2017, 690, 228-238.	5.5	54
89	Interface engineering of NiS2/CoS2 nanohybrids as bifunctional electrocatalysts for rechargeable solid state Zn-air battery. Journal of Power Sources, 2019, 437, 226893.	7.8	54
90	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1262-1274.	4.7	53

#	Article	IF	CITATIONS
91	Surface modification of Li-rich layered Li[Li0.17Ni0.17Co0.10Mn0.56]O2 oxide with LiV3O8 as a cathode material for Li-ion batteries. Journal of Alloys and Compounds, 2017, 690, 256-266.	5.5	52
92	Controllable synthesis of Co2P nanorods as high-efficiency bifunctional electrocatalyst for overall water splitting. Journal of Power Sources, 2018, 402, 345-352.	7.8	51
93	Multiple Twin Boundaryâ€Regulated Metastable Pd for Ethanol Oxidation Reaction. Advanced Energy Materials, 2022, 12, 2103505.	19.5	51
94	Phase Transfer of Mo ₂ C Induced by Boron Doping to Boost Nitrogen Reduction Reaction Catalytic Activity. Advanced Functional Materials, 2022, 32, .	14.9	51
95	Controlled synthesis of porous spinel cobaltite core-shell microspheres as high-performance catalysts for rechargeable Li–O2 batteries. Nano Energy, 2015, 13, 718-726.	16.0	48
96	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie - International Edition, 2020, 59, 5092-5101.	13.8	45
97	Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. Science China Materials, 2019, 62, 1096-1104.	6.3	43
98	Engineering cobalt sulfide/oxide heterostructure with atomically mixed interfaces for synergistic electrocatalytic water splitting. Nano Research, 2022, 15, 1246-1253.	10.4	43
99	Defective Bimetallic Selenides for Selective CO ₂ Electroreduction to CO. Advanced Materials, 2022, 34, e2106354.	21.0	43
100	Synthesis of Cubic-Shaped Pt Particles with (100) Preferential Orientation by a Quick, One-Step and Clean Electrochemical Method. ACS Applied Materials & https://www.amp.com/aprices/18864.	8.0	39
101	Cobalt-Doped NiS ₂ Micro/Nanostructures with Complete Solid Solubility as High-Performance Cathode Materials for Actual High-Specific-Energy Thermal Batteries. ACS Applied Materials & Samp; Interfaces, 2020, 12, 50377-50387.	8.0	39
102	Developing Indium-based Ternary Spinel Selenides for Efficient Solid Flexible Zn-Air Batteries and Water Splitting. ACS Applied Materials & Samp; Interfaces, 2020, 12, 8115-8123.	8.0	38
103	One-step synthesis of the PdPt bimetallic nanodendrites with controllable composition for methanol oxidation reaction. Science China Materials, 2018, 61, 697-706.	6.3	37
104	Bifunctional hydroxyl group over polymeric carbon nitride to achieve photocatalytic H ₂ O ₂ production in ethanol aqueous solution with an apparent quantum yield of 52.8% at 420 nm. Chemical Communications, 2019, 55, 13279-13282.	4.1	37
105	Tungsten disulfide-based nanomaterials for energy conversion and storage. Tungsten, 2020, 2, 109-133.	4.8	37
106	Air-stable phosphorus-doped molybdenum nitride for enhanced electrocatalytic hydrogen evolution. Communications Chemistry, 2018, 1 , .	4.5	36
107	微纳结构过æ¸j金属化å•̂物能æ°è½¬åŒ–ç"μå,¬åŒ–å‰,ç"究进展. Science China Materials	, 20 2 \$, 64,	1-26.
108	Investigation of failure mechanism of rechargeable zinc–air batteries with poly(acrylic acid) alkaline gel electrolyte during discharge–charge cycles at different current densities. Chemical Engineering Journal, 2022, 429, 132331.	12.7	36

#	Article	IF	Citations
109	Charge redistribution of Co on cobalt (II) oxide surface for enhanced oxygen evolution electrocatalysis. Nano Energy, 2019, 61, 267-274.	16.0	35
110	The anion effect on the oxygen reduction of MnX (X = O, S, and Se) catalysts. Journal of Materials Chemistry A, 2015, 3, 3425-3431.	10.3	34
111	Ultrafast Synthesis for Functional Nanomaterials. Cell Reports Physical Science, 2021, 2, 100302.	5.6	34
112	Enhanced hydrogen production from ammonia borane over CuNi alloy nanoparticles supported on TiO2(B)/anatase mixed-phase nanofibers with high specific surface area. Journal of Alloys and Compounds, 2020, 815, 152431.	5. 5	33
113	Improving the Electrocatalytic Activity of Pt Monolayer Catalysts for Electrooxidation of Methanol, Ethanol and Ammonia by Tailoring the Surface Morphology of the Supporting Core. ChemElectroChem, 2016, 3, 537-551.	3.4	32
114	Pyrite-Type CoS2 Nanoparticles Supported on Nitrogen-Doped Graphene for Enhanced Water Splitting. Frontiers in Chemistry, 2018, 6, 569.	3.6	32
115	Investigation of the Environmental Stability of Poly(vinyl alcohol)–KOH Polymer Electrolytes for Flexible Zinc–Air Batteries. Frontiers in Chemistry, 2019, 7, 678.	3.6	32
116	Understanding the Gap between Academic Research and Industrial Requirements in Rechargeable Zinc″on Batteries. Batteries and Supercaps, 2021, 4, 60-71.	4.7	32
117	Strategies for Optimizing the Photocatalytic Waterâ€Splitting Performance of Metal–Organic Frameworkâ€Based Materials. Small Science, 2021, 1, 2100060.	9.9	31
118	Phase and composition controllable synthesis of nickel phosphide-based nanoparticles via a low-temperature process for efficient electrocatalytic hydrogen evolution. Electrochimica Acta, 2017, 258, 866-875.	5. 2	31
119	Bimetallic Multiâ€Level Layered Coâ€NiOOH/Ni ₃ S ₂ @NF Nanosheet for Hydrogen Evolution Reaction in Alkaline Medium. Small, 2022, 18, e2106904.	10.0	31
120	Polypyrrole-coated hierarchical porous composites nanoarchitectures for advanced solid-state flexible hybrid devices. Nano Energy, 2016, 19, 307-317.	16.0	30
121	Recent Progress in Advanced Characterization Methods for Siliconâ€Based Lithiumâ€lon Batteries. Small Methods, 2019, 3, 1900158.	8.6	30
122	Kirigami-Inspired Flexible and Stretchable Zinc–Air Battery Based on Metal-Coated Sponge Electrodes. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54833-54841.	8.0	30
123	Co ₃ O ₄ nanoparticles supported on N-doped electrospinning carbon nanofibers as an efficient and bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. Inorganic Chemistry Frontiers, 2019, 6, 3554-3561.	6.0	29
124	A highly efficient electrocatalyst of perovskite LaNiO3 for nonaqueous Li–O2 batteries with superior cycle stability. Journal of Alloys and Compounds, 2016, 664, 750-755.	5.5	28
125	Size- and Density-Controllable Fabrication of the Platinum Nanoparticle/ITO Electrode by Pulse Potential Electrodeposition for Ammonia Oxidation. ACS Applied Materials & Electrodeposition for Ammonia Oxidation. ACS Applied Materials & Electrode by Pulse Potential Potential Plate Potential Potential Plate Potential Potential Plate Potential Plate Potential Plate Potential Plate Potential Plate Potential Plate Platinum Nanoparticle/ITO Electrode by Pulse Potential Plate Platinum Nanoparticle/ITO Electrode Plate Platinum Nanoparticle/ITO Electrode Plate Plate Platinum Nanoparticle/ITO Electrode Plate P	8.0	28
126	Engineering Pyrite-Type Bimetallic Ni-Doped CoS2 Nanoneedle Arrays over a Wide Compositional Range for Enhanced Oxygen and Hydrogen Electrocatalysis with Flexible Property. Catalysts, 2017, 7, 366.	3.5	28

#	Article	IF	CITATIONS
127	Regulating metal active sites of atomically-thin nickel-doped spinel cobalt oxide toward enhanced oxygen electrocatalysis. Chemical Engineering Journal, 2022, 435, 134261.	12.7	28
128	Cobalt sulfides constructed heterogeneous interfaces decorated on N,S-codoped carbon nanosheets as a highly efficient bifunctional oxygen electrocatalyst. Journal of Materials Chemistry A, 2021, 9, 13926-13935.	10.3	27
129	Ex situ characterization of metallurgical inclusions in X100 pipeline steel before and after immersion in a neutral pH bicarbonate solution. Journal of Alloys and Compounds, 2016, 673, 28-37.	5.5	26
130	Porous Zinc Anode Design for Zn-air Chemistry. Frontiers in Chemistry, 2019, 7, 656.	3.6	26
131	Regulating the Catalytically Active Sites in Low-Cost and Earth-Abundant 3d Transition-Metal-Based Electrode Materials for High-Performance Zinc–Air Batteries. Energy & Electrode Materials for High-Performance Zinc–Air Batteries. Energy & Electrode Materials for High-Performance Zinc–Air Batteries.	5.1	26
132	Metal chalcogenides: An emerging material for electrocatalysis. APL Materials, 2021, 9, .	5.1	26
133	Spin State Tuning of the Octahedral Sites in Ni–Co-Based Spinel toward Highly Efficient Urea Oxidation Reaction. Journal of Physical Chemistry C, 2021, 125, 9190-9199.	3.1	25
134	Enhanced electrochemical performance of Na _{0.75} O ₂ micro-sheets at 3.8 V for Na-ion batteries with nanosized-thin AIF ₃ coating. Nanoscale, 2018, 10, 12625-12630.	5.6	24
135	Controlled Synthesis of Niâ€Doped MoS ₂ Hybrid Electrode for Synergistically Enhanced Waterâ€Splitting Process. Chemistry - A European Journal, 2020, 26, 4097-4103.	3.3	23
136	Surface/interface engineering of noble-metals and transition metal-based compounds for electrocatalytic applications. Journal of Materials Science and Technology, 2020, 38, 221-236.	10.7	23
137	Powder metallurgy synthesis of porous Ni-Fe alloy for oxygen evolution reaction and overall water splitting. Journal of Materials Science and Technology, 2020, 37, 154-160.	10.7	23
138	Dynamic stretching–electroplating metalâ€coated textile for a flexible and stretchable zinc–air battery. , 2022, 4, 867-877.		23
139	Enhanced antibacterial properties of biocompatible titanium ⟨i>via⟨ i> electrochemically deposited Ag/TiO⟨sub>2⟨ sub⟩ nanotubes and chitosan–gelatin–Ag–ZnO complex coating. RSC Advances, 2019, 9, 4521-4529.	3.6	19
140	Advanced Characterization Techniques for Identifying the Key Active Sites of Gasâ€Involved Electrocatalysts. Advanced Functional Materials, 2020, 30, 2001704.	14.9	19
141	Progress and Perspective of Metallic Glasses for Energy Conversion and Storage. Advanced Energy Materials, 2022, 12, .	19.5	19
142	The applications of singleâ€atom alloys in electrocatalysis: Progress and challenges. SmartMat, 2023, 4, .	10.7	19
143	Size-controllable synthesis and high-performance formic acid oxidation of polycrystalline Pd nanoparticles. Rare Metals, 2019, 38, 115-121.	7.1	17
144	Intergrown LiNi0.5Mn1.5O4·LiNi1/3Co1/3Mn1/3O2 composite nanorods as high-energy density cathode materials for lithium-ion batteries. Journal of Materials Chemistry A, 2013, 1, 13742.	10.3	16

#	Article	IF	Citations
145	In situ formation and superior lithium storage properties of tentacle-like ZnO@NC@CNTs composites. Nanoscale Advances, 2019, 1, 1200-1206.	4.6	16
146	Non-equilibrium synthesis of stacking faults-abundant Ru nanoparticles towards electrocatalytic water splitting. Applied Catalysis B: Environmental, 2022, 316, 121682.	20.2	16
147	Combining the Advantages of Hollow and One-Dimensional Structures: Balanced Activity and Stability toward Methanol Oxidation Based on the Interface of PtCo Nanochains. ACS Applied Energy Materials, 2019, 2, 1588-1593.	5.1	15
148	3D Foam Anode and Hydrogel Electrolyte for Highâ€Performance and Stable Flexible Zinc–Air Battery. ChemistrySelect, 2020, 5, 8305-8310.	1.5	15
149	Inversely Tuning the CO ₂ Electroreduction and Hydrogen Evolution Activity on Metal Oxide via Heteroatom Doping. Angewandte Chemie, 2021, 133, 7680-7684.	2.0	15
150	Fabrication of the Ni-NiCl2 Composite Cathode Material for Fast-Response Thermal Batteries. Frontiers in Chemistry, 2021, 9, 679231.	3.6	15
151	Single atoms (Pt, Ir and Rh) anchored on activated NiCo LDH for alkaline hydrogen evolution reaction. Chemical Communications, 2022, 58, 8254-8257.	4.1	15
152	Morphology Controllable Synthesis of NiO/NiFe2O4 Hetero-Structures for Ultrafast Lithium-Ion Battery. Frontiers in Chemistry, 2018, 6, 654.	3.6	14
153	Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020, 132, 5130-5139.	2.0	14
154	A novel NiCl2-based cathode material for high-voltage thermal battery. Materials Letters, 2021, 301, 130272.	2.6	14
155	Atomically Dispersed Selenium Sites on Nitrogenâ€Doped Carbon for Efficient Electrocatalytic Oxygen Reduction. Angewandte Chemie, 2022, 134, .	2.0	14
156	Graphene Hybrids: Identifying the Key Role of Pyridinicâ€N–Co Bonding in Synergistic Electrocatalysis for Reversible ORR/OER (Adv. Mater. 23/2018). Advanced Materials, 2018, 30, 1870164.	21.0	13
157	Facile High Throughput Wet-Chemical Synthesis Approach Using a Microfluidic-Based Composition and Temperature Controlling Platform. Frontiers in Chemistry, 2020, 8, 579828.	3.6	13
158	Acceptorâ€Doping Accelerated Charge Separation in Cu ₂ O Photocathode for Photoelectrochemical Water Splitting: Theoretical and Experimental Studies. Angewandte Chemie, 2020, 132, 18621-18625.	2.0	13
159	Building a Library for Catalysts Research Using Highâ€Throughput Approaches. Advanced Functional Materials, 2022, 32, 2107862.	14.9	13
160	Effect of Pretreatment and Annealing on Aluminum Coating Prepared by Physical Vapor Deposition on AZ91D Magnesium Alloys. International Journal of Electrochemical Science, 2016, 11, 5655-5668.	1.3	12
161	Spontaneous Synthesis of Silverâ€Nanoparticleâ€Decorated Transitionâ€Metal Hydroxides for Enhanced Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 7312-7317.	2.0	12
162	Controlled Synthesis and Structure Engineering of Transition Metalâ€based Nanomaterials for Oxygen and Hydrogen Electrocatalysis in Zincâ€Air Battery and Waterâ€Splitting Devices. ChemSusChem, 2021, 14, 1659-1673.	6.8	12

#	Article	IF	Citations
163	Ni-Doped Mo ₂ C Anchored on Graphitized Porous Carbon for Boosting Electrocatalytic N ₂ Reduction. ACS Applied Materials & Interfaces, 2022, 14, 17273-17281.	8.0	12
164	Zincâ€Air Batteries: Atomic Layer Co ₃ O ₄ Nanosheets: The Key to Knittable Zn–Air Batteries (Small 43/2018). Small, 2018, 14, 1870200.	10.0	11
165	Electrocatalysis: Ultrafine Pt Nanoparticleâ€Decorated Pyriteâ€Type CoS ₂ Nanosheet Arrays Coated on Carbon Cloth as a Bifunctional Electrode for Overall Water Splitting (Adv. Energy Mater.) Tj ETQq1 1	0.7 843 14	rgBT Overlo
166	Promoting the charge separation and photoelectrocatalytic water reduction kinetics of Cu2O nanowires via decorating dual-cocatalysts. Journal of Materials Science and Technology, 2021, 62, 119-127.	10.7	11
167	Metal Air Batteries: Engineering Catalytic Active Sites on Cobalt Oxide Surface for Enhanced Oxygen Electrocatalysis (Adv. Energy Mater. 10/2018). Advanced Energy Materials, 2018, 8, 1870043.	19.5	10
168	Scalable Preparation and Improved Discharge Properties of FeS2@CoS2 Cathode Materials for High-Temperature Thermal Battery. Nanomaterials, 2022, 12, 1360.	4.1	10
169	One-Step Fabrication and Localized Electrochemical Characterization of Continuous Al-Alloyed Intermetallic Surface Layer on Magnesium Alloy. Coatings, 2018, 8, 148.	2.6	9
170	Reversible Zn stripping/plating achieved by surface thin Sn layer for high-performance aqueous zinc metal batteries. Journal of Materials Science and Technology, 2022, 117, 72-78.	10.7	9
171	Isolated Platinum Atoms Stabilized by Amorphous Tungstenic Acid: Metal–Support Interaction for Synergistic Oxygen Activation. Angewandte Chemie, 2018, 130, 9495-9500.	2.0	7
172	Hierarchical Porous NiS@NiO Nanoarrays in Situ Grown on Nickel Foam as Superior Electrocatalyst for Water Splitting. International Journal of Electrochemical Science, 2020, 15, 3563-3577.	1.3	7
173	Solvo/Hydrothermal Preparation of MnO <i>_x</i> @rGO Nanocomposites for Electrocatalytic Oxygen Reduction. Acta Chimica Sinica, 2014, 72, 920.	1.4	7
174	Tailoring the spin state of active sites in amorphous transition metal sulfides to promote oxygen electrocatalysis. Science China Materials, 2022, 65, 3479-3489.	6.3	7
175	Nanoporous nickel with rich adsorbed oxygen for efficient alkaline hydrogen evolution electrocatalysis. Science China Materials, 2022, 65, 1825-1832.	6.3	6
176	In-situ multi-deposition process for cobalt-sulfide synthesis with efficient bifunctional catalytic activity. Ferroelectrics, 2018, 523, 119-125.	0.6	5
177	Zinc–Air Batteries: A Rechargeable Zn–Air Battery with High Energy Efficiency and Long Life Enabled by a Highly Waterâ€Retentive Gel Electrolyte with Reaction Modifier (Adv. Mater. 22/2020). Advanced Materials, 2020, 32, 2070172.	21.0	5
178	A Facile Electrochemical Method to Prepare Pt Disk Electrode with (100) Preferential Orientation for Investigating Structure- Sensitive Electro-Oxidation Reactions. International Journal of Electrochemical Science, 2016, , 4675-4687.	1.3	4
179	Zinc–Air Batteries: Atomically Thin Mesoporous Co ₃ O ₄ Layers Strongly Coupled with Nâ€rGO Nanosheets as Highâ€Performance Bifunctional Catalysts for 1D Knittable Zinc–Air Batteries (Adv. Mater. 4/2018). Advanced Materials, 2018, 30, 1870027.	21.0	4
180	Preparation of Ni3Fe2@NC/CC Integrated Electrode and Its Application in Zinc-Air Battery. Frontiers in Chemistry, 2020, 8, 575288.	3.6	4

#	Article	IF	Citations
181	A Solutionâ€based Method for Synthesizing Pyriteâ€type Ferrous Metal Sulfide Microspheres with Efficient OER Activity. Chemistry - an Asian Journal, 2020, 15, 2231-2238.	3.3	4
182	Ir Single Atoms Doped Cuboctahedral Pd for Boosted Methanol Oxidation Reaction. Particle and Particle Systems Characterization, 2022, 39, .	2.3	4
183	Preparation and properties of Mg-doped Li-B alloy anode materials for high specific-capacity thermal batteries. Materials Letters, 2022, 316, 132038.	2.6	4
184	Zincâ€Air Batteries: Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc–Air Batteries (Adv. Mater. 31/2021). Advanced Materials, 2021, 33, 2170243.	21.0	3
185	Preparation and properties of MnF3 cathode materials for high-voltage thermal batteries. Materials Letters, 2022, 324, 132686.	2.6	3
186	Finite-Element Analysis on Percolation Performance of Foam Zinc. ACS Omega, 2018, 3, 11018-11025.	3.5	2
187	Solution process synthesis of morphology-controllable CoSe2 nanocrystals with efficient bifunctional catalytic activity. Ferroelectrics, 2018, 523, 126-133.	0.6	1
188	Electrocatalysis: Mesoporous Decoration of Freestanding Palladium Nanotube Arrays Boosts the Electrocatalysis Capabilities toward Formic Acid and Formate Oxidation (Adv. Energy Mater. 25/2019). Advanced Energy Materials, 2019, 9, 1970100.	19.5	1
189	Flexible and Wearable Power Sources for Nextâ€Generation Wearable Electronics. Batteries and Supercaps, 2020, 3, 1261-1261.	4.7	1
190	Frontispiz: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie, 2020, 132, .	2.0	1
191	Correlating the crystal structure and facet of indium oxides with their activities for CO2 electroreduction. Fundamental Research, 2022, , .	3.3	1
192	Effect of Multifunctional (NH4)2SO4 and Co-deposition Factors on Porous Copper Film. International Journal of Electrochemical Science, 2017, , 10800-10812.	1.3	0
193	Frontispiece: Tunable Periodically Ordered Mesoporosity in Palladium Membranes Enables Exceptional Enhancement of Intrinsic Electrocatalytic Activity for Formic Acid Oxidation. Angewandte Chemie - International Edition, 2020, 59, .	13.8	O