
David L Sacks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6011912/publications.pdf Version: 2024-02-01

DAVID L SACKS

#	Article	IF	CITATIONS
1	Stress conditions promote Leishmania hybridization in vitro marked by expression of the ancestral gamete fusogen HAP2 as revealed by single-cell RNA-seq. ELife, 2022, 11, .	6.0	23
2	Experimental Hybridization in Leishmania: Tools for the Study of Genetic Exchange. Pathogens, 2022, 11, 580.	2.8	3
3	Leishmania Sexual Reproductive Strategies as Resolved through Computational Methods Designed for Aneuploid Genomes. Genes, 2021, 12, 167.	2.4	12
4	Resistance Against Leishmania major Infection Depends on Microbiota-Guided Macrophage Activation. Frontiers in Immunology, 2021, 12, 730437.	4.8	7
5	InÂVitro Generation of Leishmania Hybrids. Cell Reports, 2020, 31, 107507.	6.4	31
6	The Null Hypothesis of IFN-Î ³ and Monocyte Function in Leishmaniasis. Cell Host and Microbe, 2020, 27, 683-684.	11.0	2
7	M2-like, dermal macrophages are maintained via IL-4/CCL24–mediated cooperative interaction with eosinophils in cutaneous leishmaniasis. Science Immunology, 2020, 5, .	11.9	48
8	The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PLoS Pathogens, 2020, 16, e1008674.	4.7	40
9	CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio, 2019, 10, .	4.1	22
10	Inflammasomes and Leishmania: in good times or bad, in sickness or in health. Current Opinion in Microbiology, 2019, 52, 70-76.	5.1	28
11	Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. PLoS Genetics, 2019, 15, e1008042.	3.5	70
12	Mannose receptor high, M2 dermal macrophages mediate nonhealing <i>Leishmania major</i> infection in a Th1 immune environment. Journal of Experimental Medicine, 2018, 215, 357-375.	8.5	92
13	The midgut microbiota plays an essential role in sand fly vector competence for <i>Leishmania major</i> . Cellular Microbiology, 2017, 19, e12755.	2.1	67
14	The Transcriptome of <i>Leishmania major</i> Developmental Stages in Their Natural Sand Fly Vector. MBio, 2017, 8, .	4.1	86
15	Gene Expression in <i>Leishmania</i> Is Regulated Predominantly by Gene Dosage. MBio, 2017, 8, .	4.1	108
16	Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS Pathogens, 2017, 13, e1006479.	4.7	77
17	The Nlrp3 inflammasome, ILâ€1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of <i>Leishmania major</i> in C57BL/6 mice. European Journal of Immunology, 2016, 46, 897-911.	2.9	120
18	The Potential Use of Forensic DNA Methods Applied to Sand Fly Blood Meal Analysis to Identify the Infection Reservoirs of Anthroponotic Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004706.	3.0	5

DAVID L SACKS

#	Article	IF	CITATIONS
19	Gateway to deLiver: How malaria sporozoites cross the sinusoidal barrier. Journal of Experimental Medicine, 2015, 212, 1340-1340.	8.5	0
20	Cross-species genetic exchange between visceral and cutaneous strains of <i>Leishmania</i> in the sand fly vector. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16808-16813.	7.1	76
21	Lost but Not Forgotten. Cell Host and Microbe, 2014, 16, 423-425.	11.0	0
22	Site-Dependent Recruitment of Inflammatory Cells Determines the Effective Dose of Leishmania major. Infection and Immunity, 2014, 82, 2713-2727.	2.2	63
23	Tracking antigen <i>â€</i> specific CD4 ⁺ T cells throughout the course of chronic <i>Leishmania major</i> infection in resistant mice. European Journal of Immunology, 2013, 43, 427-438.	2.9	29
24	The Mating Competence of Geographically Diverse Leishmania major Strains in Their Natural and Unnatural Sand Fly Vectors. PLoS Genetics, 2013, 9, e1003672.	3.5	92
25	Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response. PLoS Pathogens, 2012, 8, e1002536.	4.7	173
26	Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major. PLoS Neglected Tropical Diseases, 2011, 5, e1288.	3.0	43
27	Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies. Cellular Microbiology, 2010, 12, 906-918.	2.1	45
28	BAC talk about cell type-specific regulation of human IL-10. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16895-16896.	7.1	1
29	Vector Transmission of Leishmania Abrogates Vaccine-Induced Protective Immunity. PLoS Pathogens, 2009, 5, e1000484.	4.7	169
30	Demonstration of Genetic Exchange During Cyclical Development of <i>Leishmania</i> in the Sand Fly Vector. Science, 2009, 324, 265-268.	12.6	295
31	In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies. Science, 2008, 321, 970-974.	12.6	719
32	Quantification of the infectious dose of <i>Leishmania major</i> transmitted to the skin by single sand flies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10125-10130.	7.1	159
33	Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunological Reviews, 2006, 213, 159-179.	6.0	129
34	Nonhealing Infection despite Th1 Polarization Produced by a Strain of <i>Leishmania major</i> in C57BL/6 Mice. Journal of Immunology, 2005, 174, 2934-2941.	0.8	134
35	Reâ€examination of the immunosuppressive mechanisms mediating nonâ€cure of <i>Leishmania</i> infection in mice. Immunological Reviews, 2004, 201, 225-238.	6.0	121
36	Optimization of DNA vaccination against cutaneous leishmaniasis. Vaccine, 2002, 20, 3702-3708.	3.8	54

DAVID L SACKS

#	Article	IF	CITATIONS
37	Evasion of innate immunity by parasitic protozoa. Nature Immunology, 2002, 3, 1041-1047.	14.5	328
38	The immunology of susceptibility and resistance to Leishmania major in mice. Nature Reviews Immunology, 2002, 2, 845-858.	22.7	1,064
39	Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis. Annual Review of Microbiology, 2001, 55, 453-483.	7.3	326
40	Leishmania-sand fly interactions controlling species-specific vector competence. Microreview. Cellular Microbiology, 2001, 3, 189-196.	2.1	114
41	The Role of Interleukin (IL)-10 in the Persistence of <i>Leishmania major</i> in the Skin after Healing and the Therapeutic Potential of Anti–IL-10 Receptor Antibody for Sterile Cure. Journal of Experimental Medicine, 2001, 194, 1497-1506.	8.5	513
42	Protection Against Cutaneous Leishmaniasis Resulting from Bites of Uninfected Sand Flies. Science, 2000, 290, 1351-1354.	12.6	340
43	A Natural Model of <i>Leishmania major /i>Infection Reveals a Prolonged "Silent―Phase of Parasite Amplification in the Skin Before the Onset of Lesion Formation and Immunity. Journal of Immunology, 2000, 165, 969-977.</i>	0.8	357
44	Inhibition of host cell signal transduction by Leishmania: observations relevant to the selective impairment of IL-12 responses. Current Opinion in Microbiology, 1999, 2, 438-443.	5.1	34
45	Evidence that the High Incidence of Treatment Failures in Indian Kalaâ€Azar Is Due to the Emergence of Antimonyâ€Resistant Strains ofLeishmania donovani. Journal of Infectious Diseases, 1999, 180, 564-567.	4.0	333
46	Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of  Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis. Journal of Experimental Medicine, 1998, 188, 1941-1953.	8.5	392