David L Sacks

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6011912/publications.pdf

Version: 2024-02-01

136950 243625 6,947 46 32 44 citations h-index g-index papers 49 49 49 5510 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	The immunology of susceptibility and resistance to Leishmania major in mice. Nature Reviews Immunology, 2002, 2, 845-858.	22.7	1,064
2	In Vivo Imaging Reveals an Essential Role for Neutrophils in Leishmaniasis Transmitted by Sand Flies. Science, 2008, 321, 970-974.	12.6	719
3	The Role of Interleukin (IL)-10 in the Persistence of <i>Leishmania major</i> in the Skin after Healing and the Therapeutic Potential of Anti–IL-10 Receptor Antibody for Sterile Cure. Journal of Experimental Medicine, 2001, 194, 1497-1506.	8.5	513
4	Development of a Natural Model of Cutaneous Leishmaniasis: Powerful Effects of  Vector Saliva and Saliva Preexposure on the Long-Term Outcome of Leishmania major Infection in the Mouse Ear Dermis. Journal of Experimental Medicine, 1998, 188, 1941-1953.	8.5	392
5	A Natural Model of <i>Leishmania major</i> i>Infection Reveals a Prolonged "Silent―Phase of Parasite Amplification in the Skin Before the Onset of Lesion Formation and Immunity. Journal of Immunology, 2000, 165, 969-977.	0.8	357
6	Protection Against Cutaneous Leishmaniasis Resulting from Bites of Uninfected Sand Flies. Science, 2000, 290, 1351-1354.	12.6	340
7	Evidence that the High Incidence of Treatment Failures in Indian Kalaâ€Azar Is Due to the Emergence of Antimonyâ€Resistant Strains ofLeishmania donovani. Journal of Infectious Diseases, 1999, 180, 564-567.	4.0	333
8	Evasion of innate immunity by parasitic protozoa. Nature Immunology, 2002, 3, 1041-1047.	14.5	328
9	Molecular Aspects of Parasite-Vector and Vector-Host Interactions in Leishmaniasis. Annual Review of Microbiology, 2001, 55, 453-483.	7.3	326
10	Demonstration of Genetic Exchange During Cyclical Development of <i>Leishmania</i> in the Sand Fly Vector. Science, 2009, 324, 265-268.	12.6	295
11	Efficient Capture of Infected Neutrophils by Dendritic Cells in the Skin Inhibits the Early Anti-Leishmania Response. PLoS Pathogens, 2012, 8, e1002536.	4.7	173
12	Vector Transmission of Leishmania Abrogates Vaccine-Induced Protective Immunity. PLoS Pathogens, 2009, 5, e1000484.	4.7	169
13	Quantification of the infectious dose of <i>Leishmania major </i> transmitted to the skin by single sand flies. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10125-10130.	7.1	159
14	Nonhealing Infection despite Th1 Polarization Produced by a Strain of <i>Leishmania major</i> in C57BL/6 Mice. Journal of Immunology, 2005, 174, 2934-2941.	0.8	134
15	Immune privilege in sites of chronic infection: Leishmania and regulatory T cells. Immunological Reviews, 2006, 213, 159-179.	6.0	129
16	Reâ€examination of the immunosuppressive mechanisms mediating nonâ€cure of <i>Leishmania</i> infection in mice. Immunological Reviews, 2004, 201, 225-238.	6.0	121
17	The Nlrp3 inflammasome, ILâ€1β, and neutrophil recruitment are required for susceptibility to a nonhealing strain of <i>Leishmania major</i> in C57BL/6 mice. European Journal of Immunology, 2016, 46, 897-911.	2.9	120
18	Leishmania-sand fly interactions controlling species-specific vector competence. Microreview. Cellular Microbiology, 2001, 3, 189-196.	2.1	114

#	Article	IF	Citations
19	Gene Expression in <i>Leishmania</i> Is Regulated Predominantly by Gene Dosage. MBio, 2017, 8, .	4.1	108
20	The Mating Competence of Geographically Diverse Leishmania major Strains in Their Natural and Unnatural Sand Fly Vectors. PLoS Genetics, 2013, 9, e1003672.	3 . 5	92
21	Mannose receptor high, M2 dermal macrophages mediate nonhealing <i>Leishmania major</i> infection in a Th1 immune environment. Journal of Experimental Medicine, 2018, 215, 357-375.	8.5	92
22	The Transcriptome of <i>Leishmania major </i> Developmental Stages in Their Natural Sand Fly Vector. MBio, 2017, 8, .	4.1	86
23	Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen Leishmania major. PLoS Pathogens, 2017, 13, e1006479.	4.7	77
24	Cross-species genetic exchange between visceral and cutaneous strains of <i>Leishmania</i> in the sand fly vector. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16808-16813.	7.1	76
25	Whole genome sequencing of experimental hybrids supports meiosis-like sexual recombination in Leishmania. PLoS Genetics, 2019, 15, e1008042.	3 . 5	70
26	The midgut microbiota plays an essential role in sand fly vector competence for <i>Leishmania major </i> . Cellular Microbiology, 2017, 19, e12755.	2.1	67
27	Site-Dependent Recruitment of Inflammatory Cells Determines the Effective Dose of Leishmania major. Infection and Immunity, 2014, 82, 2713-2727.	2.2	63
28	Optimization of DNA vaccination against cutaneous leishmaniasis. Vaccine, 2002, 20, 3702-3708.	3.8	54
29	M2-like, dermal macrophages are maintained via IL-4/CCL24–mediated cooperative interaction with eosinophils in cutaneous leishmaniasis. Science Immunology, 2020, 5, .	11.9	48
30	Proteophosphoglycan confers resistance of Leishmania major to midgut digestive enzymes induced by blood feeding in vector sand flies. Cellular Microbiology, 2010, 12, 906-918.	2.1	45
31	Infection Parameters in the Sand Fly Vector That Predict Transmission of Leishmania major. PLoS Neglected Tropical Diseases, 2011, 5, e1288.	3.0	43
32	The role of dermis resident macrophages and their interaction with neutrophils in the early establishment of Leishmania major infection transmitted by sand fly bite. PLoS Pathogens, 2020, 16, e1008674.	4.7	40
33	Inhibition of host cell signal transduction by Leishmania: observations relevant to the selective impairment of IL-12 responses. Current Opinion in Microbiology, 1999, 2, 438-443.	5.1	34
34	InÂVitro Generation of Leishmania Hybrids. Cell Reports, 2020, 31, 107507.	6.4	31
35	Tracking antigen <i>â€</i> >specific CD4 ⁺ T cells throughout the course of chronic <i>Leishmania major</i> infection in resistant mice. European Journal of Immunology, 2013, 43, 427-438.	2.9	29
36	Inflammasomes and Leishmania: in good times or bad, in sickness or in health. Current Opinion in Microbiology, 2019, 52, 70-76.	5.1	28

#	Article	lF	CITATIONS
37	Stress conditions promote Leishmania hybridization in vitro marked by expression of the ancestral gamete fusogen HAP2 as revealed by single-cell RNA-seq. ELife, 2022, 11, .	6.0	23
38	CRISPR/Cas9 Mutagenesis in Phlebotomus papatasi: the Immune Deficiency Pathway Impacts Vector Competence for Leishmania major. MBio, 2019, 10, .	4.1	22
39	Leishmania Sexual Reproductive Strategies as Resolved through Computational Methods Designed for Aneuploid Genomes. Genes, 2021, 12, 167.	2.4	12
40	Resistance Against Leishmania major Infection Depends on Microbiota-Guided Macrophage Activation. Frontiers in Immunology, 2021, 12, 730437.	4.8	7
41	The Potential Use of Forensic DNA Methods Applied to Sand Fly Blood Meal Analysis to Identify the Infection Reservoirs of Anthroponotic Visceral Leishmaniasis. PLoS Neglected Tropical Diseases, 2016, 10, e0004706.	3.0	5
42	Experimental Hybridization in Leishmania: Tools for the Study of Genetic Exchange. Pathogens, 2022, 11, 580.	2.8	3
43	The Null Hypothesis of IFN-γ and Monocyte Function in Leishmaniasis. Cell Host and Microbe, 2020, 27, 683-684.	11.0	2
44	BAC talk about cell type-specific regulation of human IL-10. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 16895-16896.	7.1	1
45	Lost but Not Forgotten. Cell Host and Microbe, 2014, 16, 423-425.	11.0	0
46	Gateway to deLiver: How malaria sporozoites cross the sinusoidal barrier. Journal of Experimental Medicine, 2015, 212, 1340-1340.	8.5	0