Mona Hosseini-sarvari

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6011202/publications.pdf

Version: 2024-02-01

95 2,925 29 49 papers citations h-index g-index

121 121 2924
all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	ZnO as a New Catalyst forN-Formylation of Amines under Solvent-Free Conditions. Journal of Organic Chemistry, 2006, 71, 6652-6654.	3.2	267
2	Reactions on a Solid Surface. A Simple, Economical and Efficient Friedelâ^'Crafts Acylation Reaction over Zinc Oxide (ZnO) as a New Catalyst. Journal of Organic Chemistry, 2004, 69, 6953-6956.	3.2	205
3	Zinc oxide (ZnO) as a new, highly efficient, and reusable catalyst for acylation of alcohols, phenols and amines under solvent free conditions. Tetrahedron, 2005, 61, 10903-10907.	1.9	137
4	TiO2 as a new and reusable catalyst for one-pot three-component syntheses of \hat{l} ±-aminophosphonates in solvent-free conditions. Tetrahedron, 2008, 64, 5459-5466.	1.9	125
5	A direct synthesis of nitriles and amides from aldehydes using dry or wet alumina in solvent free conditions. Tetrahedron, 2002, 58, 10323-10328.	1.9	99
6	Nanosized zinc oxide as a catalyst for the rapid and green synthesis of \hat{l}^2 -phosphono malonates. Tetrahedron, 2008, 64, 5519-5523.	1.9	92
7	Nano Sulfated Titania as Solid Acid Catalyst in Direct Synthesis of Fatty Acid Amides. Journal of Organic Chemistry, 2011, 76, 2853-2859.	3.2	86
8	ZnO/CH3COCl: A New and Highly Efficient Catalyst for Dehydration of Aldoximes into Nitriles Under Solvent-Free Condition. Synthesis, 2005, 2005, 787-790.	2.3	85
9	Nanocrystalline ZnO for <i>Knoevenagel</i> Condensation and Reduction of the Carbon, Carbon Double Bond in Conjugated Alkenes. Helvetica Chimica Acta, 2008, 91, 715-724.	1.6	78
10	Nano copper(<scp>i</scp>) oxide–zinc oxide catalyzed coupling of aldehydes or ketones, secondary amines, and terminal alkynes in solvent-free conditions. New Journal of Chemistry, 2014, 38, 624-635.	2.8	67
11	Catalyst-Free Organic Transformations under Visible-Light. ACS Sustainable Chemistry and Engineering, 2021, 9, 4296-4323.	6.7	62
12	Al2O3/MeSO3H (AMA) as a new reagent with high selective ability for monoesterification of diols. Tetrahedron, 2003, 59, 3627-3633.	1.9	59
13	Palladium supported on zinc oxide nanoparticles: Synthesis, characterization, and application as heterogeneous catalyst for Mizoroki–Heck and Sonogashira reactions under ligand-free and air atmosphere conditions. Applied Catalysis A: General, 2014, 475, 477-486.	4.3	51
14	Copper-catalyzed one-pot synthesis of benzimidazole derivatives. Canadian Journal of Chemistry, 2008, 86, 1044-1051.	1.1	47
15	Enhancement of Suzuki–Miyaura coupling reaction by photocatalytic palladium nanoparticles anchored to TiO2 under visible light irradiation. Catalysis Communications, 2018, 111, 10-15.	3.3	47
16	Synthesis of Bis(indolyl)methanes using a Catalytic Amount of ZnO under Solventâ€Free Conditions. Synthetic Communications, 2008, 38, 832-840.	2.1	45
17	Preparation, characterization, and catalysis application of nano-rods zinc oxide in the synthesis of 3-indolyl-3-hydroxy oxindoles in water. Applied Catalysis A: General, 2012, 441-442, 65-71.	4.3	43
18	Cu2O/TiO2 nanoparticles as visible light photocatalysts concerning C(sp2)–P bond formation. Catalysis Science and Technology, 2018, 8, 4044-4051.	4.1	41

#	Article	IF	CITATIONS
19	Solvent-Free CatalyticFriedel-Crafts Acylation of Aromatic Compounds with Carboxylic Acids by Using a Novel Heterogeneous Catalyst System:p-Toluenesulfonic Acid/Graphite. Helvetica Chimica Acta, 2005, 88, 2282-2287.	1.6	40
20	Oneâ€Pot, Threeâ€Component Synthesis of 1â€(2â€Hydroxyethyl)â€1 <i>H</i> â€1,2,3â€triazole Derivatives by Copperâ€Catalyzed 1,3â€Dipolar Cycloaddition of 2â€Azido Alcohols and Terminal Alkynes under Mild Conditions in Water. Helvetica Chimica Acta, 2010, 93, 435-449.	1.6	39
21	Solvent-free and room temperature visible light-induced C–H activation: CdS as a highly efficient photo-induced reusable nano-catalyst for the C–H functionalization cyclization of <i>t</i> -amines and C–C double and triple bonds. Green Chemistry, 2018, 20, 5540-5549.	9.0	38
22	Visible light thiocyanation of <i>N</i> -bearing aromatic and heteroaromatic compounds using Ag/TiO ₂ nanotube photocatalyst. New Journal of Chemistry, 2018, 42, 19237-19244.	2.8	37
23	Synthesis and Suzuki–Miyaura Crossâ€Coupling of Enantioenriched Secondary Potassium βâ€Trifluoroboratoamides: Catalytic, Asymmetric Conjugate Addition of Bisboronic Acid and Tetrakis(dimethylamino)diboron to α,βâ€Unsaturated Carbonyl Compounds. Advanced Synthesis and Catalysis. 2013. 355. 3037-3057.	4.3	36
24	Solventâ€free Knoevenagel Condensations over TiO ₂ . Chinese Journal of Chemistry, 2007, 25, 1563-1567.	4.9	35
25	Highly active recyclable heterogeneous Pd/ZnO nanoparticle catalyst: sustainable developments for the C–O and C–N bond cross-coupling reactions of aryl halides under ligand-free conditions. RSC Advances, 2014, 4, 44105-44116.	3.6	33
26	An Efficient and Eco-Friendly Nanocrystalline Zinc Oxide Catalyst for One-Pot, Three Component Synthesis of New Ferrocenyl Aminophosphonic Esters Under Solvent-Free Condition. Catalysis Letters, 2011, 141, 347-355.	2.6	32
27	Visible Light Driven Photocatalytic Crossâ€Coupling Reactions on Nano Pd/ZnO Photocatalyst at Roomâ€Temperature. ChemistrySelect, 2018, 3, 1898-1907.	1.5	31
28	ARS–TiO ₂ photocatalyzed direct functionalization of sp2 C–H bonds toward thiocyanation and cyclization reactions under visible light. Catalysis Science and Technology, 2020, 10, 1401-1407.	4.1	31
29	A novel and active catalyst Ag/ZnO for oxidant-free dehydrogenation of alcohols. Materials Research Bulletin, 2015, 72, 98-105.	5.2	30
30	Nano-tube TiO2 as a new catalyst for eco-friendly synthesis of imines in sunlight. Chinese Chemical Letters, 2011, 22, 547-550.	9.0	29
31	On/Off O ₂ Switchable Photocatalytic Oxidative and Protodecarboxylation of Carboxylic Acids. Journal of Organic Chemistry, 2019, 84, 13503-13515.	3.2	29
32	Nano copper(i) oxide/zinc oxide catalyzed N-arylation of nitrogen-containing heterocycles with aryl halides and arylboronic acids in air. RSC Advances, 2014, 4, 7321.	3.6	28
33	Ethanol electrooxidation at carbon paste electrode modified with Pd–ZnO nanoparticles. Sensors and Actuators B: Chemical, 2016, 230, 87-93.	7.8	28
34	Esterification of free fatty acids (Biodiesel) using nano sulfated-titania as catalyst in solvent-free conditions. Comptes Rendus Chimie, 2013, 16, 229-238.	0.5	27
35	Alizarin red S–TiO ₂ -catalyzed cascade C(sp ³)–H to C(sp ²)–H bond formation/cyclization reactions toward tetrahydroquinoline derivatives under visible light irradiation. New Journal of Chemistry, 2018, 42, 6880-6888.	2.8	27
36	Suzuki–Miyaura Cross-Coupling of Potassium Trifluoro(N-methylheteroaryl)borates with Aryl and Heteroaryl Halides. Journal of Organic Chemistry, 2013, 78, 6648-6656.	3.2	26

#	Article	IF	CITATIONS
37	Palladium Supported on Zinc Oxide Nanoparticles as Efficient Heterogeneous Catalyst for <i>SuzukiMiyaura</i> and <i>Hiyama</i> Reactions under Normal Laboratory Conditions. Helvetica Chimica Acta, 2015, 98, 805-818.	1.6	24
38	A Facile Hydration of Nitriles into Amides by Al2O3/MeSO3H (AMA). Synthetic Communications, 2003, 33, 207-212.	2.1	23
39	Au@ZnO Core–Shell: Scalable Photocatalytic Trifluoromethylation Using CF ₃ CO ₂ Na as an Inexpensive Reagent under Visible Light Irradiation. Organic Process Research and Development, 2019, 23, 2345-2353.	2.7	23
40	Direct Acylation of Phenol and Naphthol Derivatives in a Mixture of Graphite and Methanesulfonic Acid. Synthesis, 2006, 2006, 2047-2052.	2.3	22
41	Photoâ€Difunctionalization and Photoâ€Oxidative Cleavage of the C–C Double Bond of Styrenes in the Presence of Nanosized Cadmium Sulfide (CdS) as a Highly Efficient Photoâ€Induced Reusable Nanocatalyst. European Journal of Organic Chemistry, 2020, 2020, 3834-3843.	2.4	22
42	Direct hydrogenation and one-pot reductive amidation of nitro compounds over Pd/ZnO nanoparticles as a recyclable and heterogeneous catalyst. Applied Surface Science, 2015, 324, 265-274.	6.1	21
43	Magnetically recoverable nano Pd/Fe3O4/ZnO catalyst: preparation, characterization, and application for the synthesis of 2-oxazolines and benzoxazoles. Journal of Materials Science, 2015, 50, 3065-3074.	3.7	20
44	Nanosized CdS as a Reusable Photocatalyst: The Study of Different Reaction Pathways between Tertiary Amines and Aryl Sulfonyl Chlorides through Visible-Light-Induced N-Dealkylation and C–H Activation Processes. Journal of Organic Chemistry, 2021, 86, 2117-2134.	3.2	20
45	Nano-sulfated titania (TiO) as a new solid acid catalyst for Friedel–Crafts acylation and Beckman rearrangement in solvent-free conditions. Journal of Sulfur Chemistry, 2011, 32, 463-473.	2.0	19
46	Preparation, characterization, and catalytic application of nano Ag/ZnO in the oxidation of benzylic C–H bonds in sustainable media. RSC Advances, 2015, 5, 9050-9056.	3.6	19
47	A novel method for the synthesis of N-sulfonyl aldimines using AlCl3 under solvent-free conditions (SFC). Arkivoc, 2007, 2007, 255-264.	0.5	19
48	Alumina Sulfuric Acid Mediated Solvent-Free and One-Step Beckmann Rearrangement of Ketones and Aldehydes and a Useful Reagent for Synthesis of Keto- and Ald-Oximes. Journal of Chemical Research, 2006, 2006, 205-208.	1.3	18
49	Nano TiO2/SO42â^' as a heterogeneous solid acid catalyst for the synthesis of 5-substited-1H-tetrazoles. Comptes Rendus Chimie, 2014, 17, 1007-1012.	0.5	18
50	Visible-light assisted of nano Ni/g-C3N4 with efficient photocatalytic activity and stability for selective aerobic Câ ⁻ 'H activation and epoxidation. Journal of Organometallic Chemistry, 2020, 928, 121549.	1.8	18
51	P–C bond formation via direct and three-component conjugate addition catalyzed by ZnO nano-rods for the synthesis of 2-oxindolin-3-yl-phosphonates under solvent-free conditions. New Journal of Chemistry, 2012, 36, 1014.	2.8	17
52	Visible-light-driven photochemical activity of ternary Ag/AgBr/TiO ₂ nanotubes for oxidation C(sp ³)â€"H and C(sp ²)â€"H bonds. New Journal of Chemistry, 2020, 44, 16776-16785.	2.8	17
53	Black TiO ₂ nanoparticles with efficient photocatalytic activity under visible light at low temperature: regioselective C–N bond cleavage toward the synthesis of thioureas, sulfonamides, and propargylamines. Catalysis Science and Technology, 2020, 10, 6825-6839.	4.1	17
54	Multi-component synthesis of 2-amino-4H-chromenes catalyzed by nano ZnO in water. Collection of Czechoslovak Chemical Communications, 2011, 76, 1285-1298.	1.0	16

#	Article	IF	Citations
55	Nano-ZnO as heterogeneous catalyst for three-component one-pot synthesis of tetrahydrobenzo[b]pyrans in water. Chemistry of Heterocyclic Compounds, 2012, 48, 1307-1313.	1.2	16
56	Catalytic Organic Reactions on ZnO Current Organic Synthesis, 2013, 10, 697-723.	1.3	16
57	Nano Sulfated Titania as a Heterogeneous Solid Acid Catalyst for the Synthesis of Pyrroles by Clauson–Kaas Condensation under Solvent-free Conditions. Chemistry of Heterocyclic Compounds, 2014, 49, 1732-1739.	1.2	14
58	Commercial ZrO ₂ as a new, efficient, and reusable catalyst for the one-step synthesis of quinolines in solvent-free conditions. Canadian Journal of Chemistry, 2009, 87, 1122-1126.	1.1	13
59	Selective and CO-Retentive Addition Reactions of Acid Chlorides to Terminal Alkynes in Synthesis of \hat{l}^2 -Chloro- $\hat{l}\pm,\hat{l}^2$ -unsaturated Ketones Using ZnO. Bulletin of the Chemical Society of Japan, 2011, 84, 778-782.	3.2	13
60	Regioselective Friedel-Crafts alkylation of indoles with epoxides using nano MgO. Green Chemistry Letters and Reviews, 2012, 5, 439-449.	4.7	13
61	Visible-light-mediated semi-heterogeneous black TiO ₂ /nickel dual catalytic C (sp ²)–P bond formation toward aryl phosphonates. Dalton Transactions, 2020, 49, 17147-17151.	3.3	12
62	TiO ₂ /Cu ₂ O nanoparticle-catalyzed direct C(sp)–P bond formation <i>via</i> aerobic oxidative coupling in air and visible light. Dalton Transactions, 2020, 49, 3001-3006.	3.3	12
63	Solar and visible-light active nano Ni/g-C3N4 photocatalyst for carbon monoxide (CO) and ligand-free carbonylation reactions. Catalysis Science and Technology, 2021, 11, 956-969.	4.1	12
64	Sulfamic acid catalyzed ring opening of epoxides with amines under solvent-free conditions. Journal of the Iranian Chemical Society, 2008, 5, 384-393.	2.2	11
65	Synthesis of \hat{I}^2 -amino alcohols using MgO as a new catalyst under solvent-free conditions. Canadian Journal of Chemistry, 2008, 86, 65-71.	1.1	11
66	Synthesis of Aryl Thiocyanates using Al2O3/MeSO3H (AMA) as a Novel Heterogeneous System. Journal of Chemical Research, 2008, 2008, 318-321.	1.3	11
67	One-Pot, Three-Component Synthesis of Spirooxindoles Catalyzed by ZnO Nano-Rods in Solvent-Free Conditions. Combinatorial Chemistry and High Throughput Screening, 2012, 15, 826-834.	1.1	11
68	Synthesis of N-formylated \hat{l}^2 -lactams using nano-sulfated TiO2 as catalyst under solvent-free conditions. Comptes Rendus Chimie, 2012, 15, 980-987.	0.5	11
69	Selective Visible‣ight Photocatalytic Aerobic Oxidation of Alkenes to Epoxides with Pd/ZnO Nanoparticles. ChemistrySelect, 2020, 5, 8853-8857.	1.5	11
70	Dual organic dyes as a pseudo-redox mediation system to promotion of tandem oxidation /[3+2] cycloaddition reactions under visible light. Tetrahedron, 2021, 89, 132166.	1.9	11
71	The study of TiO2/Cu2O nanoparticles as an efficient nanophotocalyst toward surface adsorption and photocatalytic degradation of methylene blue. Applied Nanoscience (Switzerland), 2022, 12, 2195-2205.	3.1	11
72	A Novel Method for the Synthesis of N-Sulfonylaldimines by ZnO as a Recyclable Neutral Catalyst Under Solvent-Free Conditions. Phosphorus, Sulfur and Silicon and the Related Elements, 2007, 182, 2125-2130.	1.6	10

#	Article	IF	CITATIONS
73	Photocatalytic synthesis of unsymmetrical thiourea derivatives <i>via</i> visible-light irradiation using nitrogen-doped ZnO nanorods. New Journal of Chemistry, 2020, 44, 14505-14512.	2.8	10
74	Palladium immobilized on Fe3O4/ZnO nanoparticles: a novel magnetically recyclable catalyst for Suzuki–Miyaura and heck reactions under ligand-free conditions. Journal of the Iranian Chemical Society, 2016, 13, 45-53.	2.2	9
75	Inhibitory effect of coumarin and its analogs on insulin fibrillation /cytotoxicity is depend on oligomerization states of the protein. RSC Advances, 2020, 10, 38260-38274.	3.6	9
76	Boron-doped TiO ₂ (B-TiO ₂): visible-light photocatalytic difunctionalization of alkenes and alkynes. New Journal of Chemistry, 2021, 45, 12464-12470.	2.8	9
77	Synthesis of 2-Amino-4H-Chromen-4-yl Phosphonats via C-P Bond Formation Catalyzed by Nano-Rods ZnO Under Solvent-Free Condition. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 47-52.	1.1	8
78	Chlorophyll-catalyzed tandem oxidation $/[3+2]$ cycloaddition reactions toward the construction of pyrrolo $[2,1-a]$ is oquinolines under visible light. Journal of Photochemistry and Photobiology A: Chemistry, 2021, 404, 112877.	3.9	8
79	A Regioselective Synthesis of Aryl Sulfones Using Graphite/MeSO3H (GMA). Letters in Organic Chemistry, 2008, 5, 425-428.	0.5	7
80	Visibleâ€Lightâ€Driven Direct Oxidative Coupling Reaction Leading to Alkyl Aryl Ketones, Catalyzed by Nano Pd/ZnO. European Journal of Organic Chemistry, 2019, 2019, 2282-2288.	2.4	7
81	Cu2O/TiO2 as a sustainable and recyclable photocatalyst for gram-scale synthesis of phenols in water. Molecular Catalysis, 2021, 514, 111810.	2.0	7
82	Nano-rod ZnO as a novel and reusable catalyst for Câ^'P bond formation and hydrophosphonation of isatin derivatives under solvent-free conditions. Canadian Journal of Chemistry, 2013, 91, 1117-1122.	1.1	6
83	Synthesis of Ag nanoparticles decorated on TiO2 nanotubes for surface adsorption and photo-decomposition of methylene blue under dark and visible light irradiation. Research on Chemical Intermediates, 2019, 45, 1829-1840.	2.7	6
84	N-doped ZnO as an efficient photocatalyst for thiocyanation of indoles and phenols under visible-light. Photochemical and Photobiological Sciences, 2021, 20, 903-911.	2.9	6
85	Reduced graphene oxide–zinc sulfide (RGO–ZnS) nanocomposite: a new photocatalyst for oxidative cyclization of benzylamines to benzazoles under visible-light irradiation. Reaction Chemistry and Engineering, 2022, 7, 2202-2210.	3.7	6
86	Synthesis of camphorquinoxaline and quinoxaline derivatives over metal oxides as catalyst. Journal of the Iranian Chemical Society, 2012, 9, 535-543.	2.2	5
87	Visibleâ€Lightâ€Induced Câ€Pâ€Bond Formation Using Reduced Graphene Oxide Decorated with Copper Oxide/Zinc Oxide (rGO/CuO/ZnO) as Ternary Recyclable Nanophotocatalyst. ChemistrySelect, 2021, 6, 1764-1771.	1.5	5
88	One-Pot Multi-Component Route to Propargylamines Using Zinc Oxide Under Solvent-Free Conditions. Combinatorial Chemistry and High Throughput Screening, 2014, 17, 439-449.	1.1	5
89	Visible-light mediated, catalyst-free synthesis of 3-indolyl-3-hydroxy oxindoles in water. Sustainable Chemistry and Pharmacy, 2020, 18, 100343.	3.3	4
90	Visible-light-mediated phosphonylation reaction: formation of phosphonates from alkyl/arylhydrazines and trialkylphosphites using zinc phthalocyanine. Organic and Biomolecular Chemistry, 2021, 19, 5905-5911.	2.8	4

#	Article	IF	CITATIONS
91	Solvent-free Synthesis of Propargylic Alcohols using ZnO as a New and Reusable Catalyst by Direct Addition of Alkynes to Aldehydes. Bulletin of the Korean Chemical Society, 2011, 32, 4297-4303.	1.9	4
92	Al ₂ O ₃ /MeSO ₃ H (AMA) as a Novel Heterogeneous System for the Nitration of Aromatic Compounds by Magnesium Nitrate Hexahydrate. Journal of Chemical Research, 2008, 2008, 722-724.	1.3	3
93	Ni/g ₃ N ₄ Photocatalysis: Aerobic Oxidative Coupling Reaction Leading to Amidation of Aldehydes with Amines and Câ^'N, Câ^'O, and Câ^'C Cross oupling Reaction. European Journal of Organic Chemistry, 2022, 2022, .	2.4	3
94	Nano Ni/g 3 N 4 Photocatalyzed Aerobic Oxidative Coupling Reaction toward Alkyl Aryl Ketones Derivatives under Visible Light Irradiation. ChemistrySelect, 2021, 6, 9128-9133.	1.5	1
95	Au–Pd@ZnO alloy nanoparticles: a promising heterogeneous photocatalyst toward decarboxylative trifluoromethylation under visible-light irradiation. New Journal of Chemistry, 0, , .	2.8	1