Chris Rorden

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6010658/publications.pdf Version: 2024-02-01

CHDIS RODDEN

#	Article	IF	CITATIONS
1	Disruptions of the Human Connectome Associated With Hemispatial Neglect. Neurology, 2022, 98, e107-e114.	1.1	14
2	Neural correlates of impaired vocal feedback control in post-stroke aphasia. Neurolmage, 2022, 250, 118938.	4.2	12
3	Canonical Sentence Processing and the Inferior Frontal Cortex: Is There a Connection?. Neurobiology of Language (Cambridge, Mass), 2022, 3, 318-344.	3.1	2
4	Functional Connectivity and Speech Entrainment Speech Entrainment Improves Connectivity Between Anterior and Posterior Cortical Speech Areas in Non-fluent Aphasia. Neurorehabilitation and Neural Repair, 2022, 36, 164-174.	2.9	0
5	Language Recovery after Brain Injury: A Structural Network Control Theory Study. Journal of Neuroscience, 2022, 42, 657-669.	3.6	9
6	Predictors of Therapy Response in Chronic Aphasia: Building a Foundation for Personalized Aphasia Therapy. Journal of Stroke, 2022, 24, 189-206.	3.2	14
7	Neural correlates of within-session practice effects in mild motor impairment after stroke: a preliminary investigation. Experimental Brain Research, 2021, 239, 151-160.	1.5	7
8	Individualized response to semantic versus phonological aphasia therapies in stroke. Brain Communications, 2021, 3, fcab174.	3.3	28
9	Indirect White Matter Pathways Are Associated With Treated Naming Improvement in Aphasia. Neurorehabilitation and Neural Repair, 2021, 35, 346-355.	2.9	9
10	Radiographical Survey of Osteochondrodysplasia in Scottish Fold Cats caused by the TRPV4 gene variant. Human Genetics, 2021, 140, 1525-1534.	3.8	3
11	Cortical microstructural changes associated with treated aphasia recovery. Annals of Clinical and Translational Neurology, 2021, 8, 1884-1894.	3.7	7
12	Isolating the white matter circuitry of the dorsal language stream: <scp>Connectomeâ€Symptom</scp> Mapping in stroke induced aphasia. Human Brain Mapping, 2021, 42, 5689-5702.	3.6	11
13	Cortical disconnection in temporal lobe epilepsy. Epilepsy and Behavior, 2021, 123, 108231.	1.7	2
14	Neural bases of elements of syntax during speech production in patients with aphasia. Brain and Language, 2021, 222, 105025.	1.6	3
15	Machine <scp>learningâ€based</scp> multimodal prediction of language outcomes in chronic aphasia. Human Brain Mapping, 2021, 42, 1682-1698.	3.6	29
16	Upper and Lower Limb Motor Function Correlates with Ipsilesional Corticospinal Tract and Red Nucleus Structural Integrity in Chronic Stroke: A Cross-Sectional, ROI-Based MRI Study. Behavioural Neurology, 2021, 2021, 1-10.	2.1	14
17	Degradation of Praxis Brain Networks and Impaired Comprehension of Manipulable Nouns in Stroke. Journal of Cognitive Neuroscience, 2020, 32, 467-483.	2.3	14
18	Brain Damage Associated with Impaired Sentence Processing in Acute Aphasia. Journal of Cognitive Neuroscience, 2020, 32, 256-271.	2.3	20

Chris Rorden	
IF	CITATIONS
with 6, 7. 1.5	7
82. 2.4	5
	0
	CHRIS RORDEN IF with 6, 7. 1.5 82.

21	Functional Brain Imaging in Stroke Patients. , 2020, , 399-413.		0
22	Neuroanatomical structures supporting lexical diversity, sophistication, and phonological word features during discourse. NeuroImage: Clinical, 2019, 24, 101961.	2.7	11
23	Neural structures supporting spontaneous and assisted (entrained) speech fluency. Brain, 2019, 142, 3951-3962.	7.6	12
24	Neural processing critical for distinguishing between speech sounds. Brain and Language, 2019, 197, 104677.	1.6	7
25	Long-range fibre damage in small vessel brain disease affects aphasia severity. Brain, 2019, 142, 3190-3201.	7.6	40
26	Cortical and structural onnectivity damage correlated with impaired syntactic processing in aphasia. Human Brain Mapping, 2019, 40, 2153-2173.	3.6	67
27	Dissociating action and abstract verb comprehension post-stroke. Cortex, 2019, 120, 131-146.	2.4	19
28	Neural organization of speech production: A lesion-based study of error patterns in connected speech. Cortex, 2019, 117, 228-246.	2.4	31
29	Visual Simultaneity Judgments Activate a Bilateral Frontoparietal Timing System. Journal of Cognitive Neuroscience, 2019, 31, 431-441.	2.3	3
30	Transcranial direct current stimulation to treat aphasia: Longitudinal analysis of a randomized controlled trial. Brain Stimulation, 2019, 12, 190-191.	1.6	21
31	Progression of Aphasia Severity in the Chronic Stages of Stroke. American Journal of Speech-Language Pathology, 2019, 28, 639-649.	1.8	45
32	Brain-Derived Neurotrophic Factor Genotype–Specific Differences in Cortical Activation in Chronic Aphasia. Journal of Speech, Language, and Hearing Research, 2019, 62, 3923-3936.	1.6	13
33	Predicting recovery in acute poststroke aphasia. Annals of Neurology, 2018, 83, 612-622.	5.3	104
34	Anatomy of aphasia revisited. Brain, 2018, 141, 848-862.	7.6	235
35	Regional Brain Dysfunction Associated with Semantic Errors in Comprehension. Seminars in Speech and Language, 2018, 39, 079-086.	0.8	2
36	Sensorimotor impairment of speech auditory feedback processing in aphasia. Neurolmage, 2018, 165, 102-111	4.2	53

102-111.

#

20

#	Article	IF	CITATIONS
37	Cortical disconnection of the ipsilesional primary motor cortex is associated with gait speed and upper extremity motor impairment in chronic left hemispheric stroke. Human Brain Mapping, 2018, 39, 120-132.	3.6	35
38	Modulation of salience network intranetwork resting state functional connectivity in women with chronic migraine. Cephalalgia, 2018, 38, 1731-1741.	3.9	31
39	Central Executive and Default Mode Network Intra-network Functional Connectivity Patterns in Chronic Migraine. Journal of Neurological Disorders, 2018, 06, .	0.1	35
40	Smokers' Neurological Responses to Novel and Repeated Health Warning Labels (HWLs) From Cigarette Packages. Frontiers in Psychiatry, 2018, 9, 319.	2.6	1
41	Types of naming errors in chronic post-stroke aphasia are dissociated by dual stream axonal loss. Scientific Reports, 2018, 8, 14352.	3.3	32
42	Deep learning applied to wholeâ€brain connectome to determine seizure control after epilepsy surgery. Epilepsia, 2018, 59, 1643-1654.	5.1	93
43	BDNF genotype and tDCS interaction in aphasia treatment. Brain Stimulation, 2018, 11, 1276-1281.	1.6	55
44	Transcranial Direct Current Stimulation vs Sham Stimulation to Treat Aphasia After Stroke. JAMA Neurology, 2018, 75, 1470.	9.0	140
45	Resting State Functional Connectivity After Sphenopalatine Ganglion Blocks in Chronic Migraine With Medication Overuse Headache: A Pilot Longitudinal fMRI Study. Headache, 2018, 58, 732-743.	3.9	19
46	Neuroimaging somatosensory perception and masking. Neuropsychologia, 2017, 94, 44-51.	1.6	7
47	Activity associated with speech articulation measured through direct cortical recordings. Brain and Language, 2017, 169, 1-7.	1.6	5
48	Structural plasticity of the ventral stream and aphasia recovery. Annals of Neurology, 2017, 82, 147-151.	5.3	40
49	Modulation of intrinsic resting-state fMRI networks in women with chronic migraine. Neurology, 2017, 89, 163-169.	1.1	62
50	Important considerations in lesionâ€symptom mapping: Illustrations from studies of word comprehension. Human Brain Mapping, 2017, 38, 2990-3000.	3.6	38
51	Connectome-based lesion-symptom mapping (CLSM): A novel approach to map neurological function. NeuroImage: Clinical, 2017, 16, 461-467.	2.7	82
52	Chronic post-stroke aphasia severity is determined by fragmentation of residual white matter networks. Scientific Reports, 2017, 7, 8188.	3.3	44
53	Temporal lobe networks supporting the comprehension of spoken words. Brain, 2017, 140, 2370-2380.	7.6	98
54	A Multivariate Analytic Approach to the Differential Diagnosis of Apraxia of Speech. Journal of Speech, Language, and Hearing Research, 2017, 60, 3378-3392.	1.6	33

#	Article	IF	CITATIONS
55	Non-fluent speech following stroke is caused by impaired efference copy. Cognitive Neuropsychology, 2017, 34, 333-346.	1.1	9
56	Cortical Substrate of Supraspinal Fatigue following Exhaustive Aerobic Exercise Localizes to a Large Cluster in the Anterior Premotor Cortex. Frontiers in Neurology, 2017, 8, 483.	2.4	1
57	Mapping Language Networks Using the Structural and Dynamic Brain Connectomes. ENeuro, 2017, 4, ENEURO.0204-17.2017.	1.9	45
58	Abstract WP163: Post-stroke Aphasia Severity is Determined by the Disorganization of Residual White Matter Networks. Stroke, 2017, 48, .	2.0	0
59	Multivariate Connectome-Based Symptom Mapping in Post-Stroke Patients: Networks Supporting Language and Speech. Journal of Neuroscience, 2016, 36, 6668-6679.	3.6	142
60	Separate neural systems support representations for actions and objects during narrative speech in post-stroke aphasia. NeuroImage: Clinical, 2016, 10, 140-145.	2.7	24
61	Central perception of position sense involves a distributed neural network – Evidence from lesion-behavior analyses. Cortex, 2016, 79, 42-56.	2.4	45
62	Success of Anomia Treatment in Aphasia Is Associated With Preserved Architecture of Global and Left Temporal Lobe Structural Networks. Neurorehabilitation and Neural Repair, 2016, 30, 266-279.	2.9	78
63	Preservation of structural brain network hubsÂis associated with less severe post-stroke aphasia. Restorative Neurology and Neuroscience, 2015, 34, 19-28.	0.7	38
64	Individual variability in the anatomical distribution of nodes participating in rich club structural networks. Frontiers in Neural Circuits, 2015, 9, 16.	2.8	14
65	Reproducibility of the Structural Brain Connectome Derived from Diffusion Tensor Imaging. PLoS ONE, 2015, 10, e0135247.	2.5	89
66	Gray Matter Axonal Connectivity Maps. Frontiers in Psychiatry, 2015, 6, 35.	2.6	12
67	Speech entrainment compensates for Broca's area damage. Cortex, 2015, 69, 68-75.	2.4	38
68	Patterns of Poststroke Brain Damage That Predict Speech Production Errors in Apraxia of Speech and Aphasia Dissociate. Stroke, 2015, 46, 1561-1566.	2.0	85
69	Concepts within reach: Action performance predicts action language processing in stroke. Neuropsychologia, 2015, 71, 217-224.	1.6	43
70	Predicting aphasia type from brain damage measured with structural MRI. Cortex, 2015, 73, 203-215.	2.4	97
71	Chronic Broca's Aphasia Is Caused by Damage to Broca's and Wernicke's Areas. Cerebral Cortex, 2015, 25, 4689-4696.	2.9	79
72	Asymmetry of the Structural Brain Connectome in Healthy Older Adults. Frontiers in Psychiatry, 2014, 4, 186.	2.6	13

#	Article	IF	CITATIONS
73	Regional White Matter Damage Predicts Speech Fluency in Chronic Post-Stroke Aphasia. Frontiers in Human Neuroscience, 2014, 8, 845.	2.0	86
74	Mapping Remote Subcortical Ramifications of Injury after Ischemic Strokes. Behavioural Neurology, 2014, 2014, 1-6.	2.1	41
75	Assessing the Clinical Effect of Residual Cortical Disconnection After Ischemic Strokes. Stroke, 2014, 45, 988-993.	2.0	63
76	StimSync: Open-source hardware for behavioral and MRI experiments. Journal of Neuroscience Methods, 2014, 227, 90-99.	2.5	5
77	Damage to the anterior arcuate fasciculus predicts non-fluent speech production in aphasia. Brain, 2013, 136, 3451-3460.	7.6	135
78	Abnormal perilesional BOLD signal is not correlated with stroke patients' behavior. Frontiers in Human Neuroscience, 2013, 7, 669.	2.0	22
79	Saccade preparation is required for exogenous attention but not endogenous attention or IOR Journal of Experimental Psychology: Human Perception and Performance, 2012, 38, 1438-1447.	0.9	65
80	Speech entrainment enables patients with Broca's aphasia to produce fluent speech. Brain, 2012, 135, 3815-3829.	7.6	114
81	Reply: â€~The anatomy underlying acute versus chronic spatial neglect' also depends on clinical tests. Brain, 2012, 135, e208-e208.	7.6	1
82	Re-establishing Broca's initial findings. Brain and Language, 2012, 123, 125-130.	1.6	59
83	Age-specific CT and MRI templates for spatial normalization. NeuroImage, 2012, 61, 957-965.	4.2	569
84	Neglect severity after left and right brain damage. Neuropsychologia, 2012, 50, 1136-1141.	1.6	54
85	Allocentric neglect strongly associated with egocentric neglect. Neuropsychologia, 2012, 50, 1151-1157.	1.6	56
86	Transcranial Direct Current Stimulation Improves Naming Reaction Time in Fluent Aphasia. Stroke, 2011, 42, 819-821.	2.0	279
87	The anatomy underlying acute versus chronic spatial neglect: a longitudinal study. Brain, 2011, 134, 903-912.	7.6	228
88	Cerebral perfusion in chronic stroke: implications for lesion-symptom mapping and functional MRI. Behavioural Neurology, 2011, 24, 117-22.	2.1	39
89	Crossmodal visualâ€ŧactile extinction: Modulation by posture implicates biased competition in proprioceptively reconstructed space. Journal of Neuropsychology, 2010, 4, 15-32.	1.4	5
90	Extrahippocampal gray matter loss and hippocampal deafferentation in patients with temporal lobe epilepsy. Epilepsia, 2010, 51, 519-528.	5.1	118

#	Article	IF	CITATIONS
91	How common is brain atrophy in patients with medial temporal lobe epilepsy?. Epilepsia, 2010, 51, 1774-1779.	5.1	33
92	Similarity grouping and repetition blindness are both influenced by attention. Frontiers in Human Neuroscience, 2010, 4, 20.	2.0	4
93	Spatial Attention Evokes Similar Activation Patterns for Visual and Auditory Stimuli. Journal of Cognitive Neuroscience, 2010, 22, 347-361.	2.3	65
94	Activity in Preserved Left Hemisphere Regions Predicts Anomia Severity in Aphasia. Cerebral Cortex, 2010, 20, 1013-1019.	2.9	121
95	Using Transcranial Direct-Current Stimulation to Treat Stroke Patients With Aphasia. Stroke, 2010, 41, 1229-1236.	2.0	463
96	Temporal Order Processing of Syllables in the Left Parietal Lobe. Journal of Neuroscience, 2009, 29, 12568-12573.	3.6	35
97	Treating Visual Speech Perception to Improve Speech Production in Nonfluent Aphasia. Stroke, 2009, 40, 853-858.	2.0	67
98	Damage to White Matter Fiber Tracts in Acute Spatial Neglect. Cerebral Cortex, 2009, 19, 2331-2337.	2.9	108
99	Visual extinction: The effect of temporal and spatial bias. Neuropsychologia, 2009, 47, 321-329.	1.6	19
100	Lateralized temporal order judgement in dyslexia. Neuropsychologia, 2009, 47, 3244-3254.	1.6	22
101	Age-related relative volume preservation of the dominant hand cortical region. Brain Research, 2009, 1305, 14-19.	2.2	13
102	Repetitive transcranial magnetic stimulation over frontal eye fields disrupts visually cued auditory attention. Brain Stimulation, 2009, 2, 81-87.	1.6	20
103	Automated MRI analysis for identification of hippocampal atrophy in temporal lobe epilepsy. Epilepsia, 2009, 50, 228-233.	5.1	28
104	An intact eyeâ€movement system is not required to generate inhibition of return. Journal of Neuropsychology, 2009, 3, 267-271.	1.4	11
105	Lesion Mapping of Cognitive Abilities Linked to Intelligence. Neuron, 2009, 61, 681-691.	8.1	219
106	Disrupted thalamic prefrontal pathways in patients with idiopathic dystonia. Parkinsonism and Related Disorders, 2009, 15, 64-67.	2.2	31
107	An evaluation of traditional and novel tools for lesion behavior mapping. NeuroImage, 2009, 44, 1355-1362.	4.2	139
108	Neural recruitment for the production of native and novel speech sounds. NeuroImage, 2009, 46, 549-557.	4.2	57

#	Article	IF	CITATIONS
109	Modulation of Frontal Lobe Speech Areas Associated With the Production and Perception of Speech Movements. Journal of Speech, Language, and Hearing Research, 2009, 52, 812-819.	1.6	27
110	Gray and white matter imbalance – Typical structural abnormality underlying classic autism?. Brain and Development, 2008, 30, 396-401.	1.1	98
111	Covert orienting of attention and overt eye movements activate identical brain regions. Brain Research, 2008, 1204, 102-111.	2.2	132
112	Motor speech perception modulates the cortical language areas. NeuroImage, 2008, 41, 605-613.	4.2	38
113	A novel tool to analyze MRI recurrence patterns in glioblastoma. Neuro-Oncology, 2008, 10, 1019-1024.	1.2	74
114	Event related potentials reveal that increasing perceptual load leads to increased responses for target stimuli and decreased responses for irrelevant stimuli. Frontiers in Human Neuroscience, 2008, 2, 4.	2.0	22
115	Pantomime of Tool Use Depends on Integrity of Left Inferior Frontal Cortex. Cerebral Cortex, 2007, 17, 2769-2776.	2.9	229
116	Cognitive Performance and Neural Correlates of Detecting Driving Hazards in Healthy Older Adults. Dementia and Geriatric Cognitive Disorders, 2007, 24, 335-342.	1.5	31
117	What is in a name? Spatial brain circuits are used to track discourse references. NeuroReport, 2007, 18, 1215-1219.	1.2	23
118	Microstructural white matter abnormalities in nodular heterotopia with overlying polymicrogyria. Seizure: the Journal of the British Epilepsy Association, 2007, 16, 74-80.	2.0	8
119	Rank-order versus mean based statistics for neuroimaging. NeuroImage, 2007, 35, 1531-1537.	4.2	89
120	Improving Lesion-Symptom Mapping. Journal of Cognitive Neuroscience, 2007, 19, 1081-1088.	2.3	1,216
121	Severe Broca's Aphasia without Broca's Area Damage. Behavioural Neurology, 2007, 18, 237-238.	2.1	46
122	The P300 as a Marker of Waning Attention and Error Propensity. Computational Intelligence and Neuroscience, 2007, 2007, 1-9.	1.7	27
123	Extrahippocampal gray matter atrophy and memory impairment in patients with medial temporal lobe epilepsy. Human Brain Mapping, 2007, 28, 1376-1390.	3.6	61
124	Structural white matter abnormalities in patients with idiopathic dystonia. Movement Disorders, 2007, 22, 1110-1116.	3.9	77
125	Does Resection of the Medial Temporal Lobe Improve the Outcome of Temporal Lobe Epilepsy Surgery?. Epilepsia, 2007, 48, 571-578.	5.1	65
126	Neural correlates of phonological and semantic-based anomia treatment in aphasia. Neuropsychologia, 2007, 45, 1812-1822.	1.6	104

#	Article	IF	CITATIONS
127	Gray matter atrophy associated with duration of temporal lobe epilepsy. NeuroImage, 2006, 32, 1070-1079.	4.2	119
128	Memory and language impairments and their relationships to hippocampal and perirhinal cortex damage in patients with medial temporal lobe epilepsy. Epilepsy and Behavior, 2006, 8, 593-600.	1.7	92
129	Speech apraxia without oral apraxia: can normal brain function explain the physiopathology?. NeuroReport, 2006, 17, 1027-1031.	1.2	40
130	Voxel-based Morphometry Reveals Excess Gray Matter Concentration in Patients with Focal Cortical Dysplasia. Epilepsia, 2006, 47, 908-915.	5.1	68
131	Disturbed line bisection is associated with posterior brain lesions. Brain Research, 2006, 1080, 17-25.	2.2	126
132	Measuring the Hemodynamic Response in Chronic Hypoperfusion. Neurocase, 2006, 12, 146-150.	0.6	30
133	Transcranial magnetic stimulation of the left human frontal eye fields eliminates the cost of invalid endogenous cues. Neuropsychologia, 2005, 43, 1288-1296.	1.6	79
134	Voxel-based morphometry of the thalamus in patients with refractory medial temporal lobe epilepsy. NeuroImage, 2005, 25, 1016-1021.	4.2	118
135	Brain damage and cortical compensation in foreign accent syndrome. Neurocase, 2005, 11, 319-324.	0.6	48
136	Attentional Functions of Parietal and Frontal Cortex. Cerebral Cortex, 2005, 15, 1469-1484.	2.9	177
137	Statistical voxel-wise analysis of ictal SPECT reveals pattern of abnormal perfusion in patients with temporal lobe epilepsy. Arquivos De Neuro-Psiquiatria, 2005, 63, 977-983.	0.8	12
138	Voxel-Based Morphometry Reveals Gray Matter Network Atrophy in Refractory Medial Temporal Lobe Epilepsy. Archives of Neurology, 2004, 61, 1379.	4.5	172
139	The Anatomy of Spatial Neglect based on Voxelwise Statistical Analysis: A Study of 140 Patients. Cerebral Cortex, 2004, 14, 1164-1172.	2.9	513
140	Using human brain lesions to infer function: a relic from a past era in the fMRI age?. Nature Reviews Neuroscience, 2004, 5, 812-819.	10.2	577
141	The effect of ipsilesional cues on line-bisection errors: the importance of predictive value. Neuropsychologia, 2004, 42, 175-182.	1.6	4
142	Exogenous Orienting of Attention Depends upon the Ability to Execute Eye Movements. Current Biology, 2004, 14, 792-795.	3.9	87
143	Spatiotemporal Dynamics of Attention in Visual Neglect: A Case Study. Cortex, 2004, 40, 433-440.	2.4	27
144	Attentional Functions in Dorsal and Ventral Simultanagnosia. Cognitive Neuropsychology, 2003, 20, 675-701.	1.1	67

#	Article	IF	CITATIONS
145	Mental Representation of Number in Different Numerical Forms. Current Biology, 2003, 13, 2045-2050.	3.9	17
146	Non-spatially lateralized mechanisms in hemispatial neglect. Nature Reviews Neuroscience, 2003, 4, 26-36.	10.2	471
147	The anatomy of visual neglect. Brain, 2003, 126, 1986-1997.	7.6	707
148	Enhancing the Sensitivity of a Sustained Attention Task to Frontal Damage: Convergent Clinical and Functional Imaging Evidence. Neurocase, 2003, 9, 340-349.	0.6	139
149	Action and perception: Evidence against converging selection processes. Visual Cognition, 2002, 9, 458-476.	1.6	17
150	The subcortical anatomy of human spatial neglect: putamen, caudate nucleus and pulvinar. Brain, 2002, 125, 350-360.	7.6	433
151	Enhanced Tactile Performance at the Destination of an Upcoming Saccade. Current Biology, 2002, 12, 1429-1434.	3.9	40
152	Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking. NeuroImage, 2001, 14, 486-500.	4.2	817
153	Spatial deployment of attention within and across hemifields in an auditory task. Experimental Brain Research, 2001, 137, 487-496.	1.5	19
154	Do neck-proprioceptive and caloric-vestibular stimulation influence covert visual attention in normals, as they influence visual neglect?. Neuropsychologia, 2001, 39, 364-375.	1.6	47
155	Ipsilesional Biases in Saccades but not Perception after Lesions of the Human Inferior Parietal Lobule. Journal of Cognitive Neuroscience, 2001, 13, 920-929.	2.3	44
156	Neural consequences of competing stimuli in both visual hemifields: A physiological basis for visual extinction. Annals of Neurology, 2000, 47, 440-446.	5.3	77
157	Stereotaxic Display of Brain Lesions. Behavioural Neurology, 2000, 12, 191-200.	2.1	2,289
158	Distinguishing sensory and motor biases in parietal and frontal neglect. Brain, 2000, 123, 1643-1659.	7.6	112
159	The fate of global information in dorsal simultanagnosia. Neurocase, 2000, 6, 295-306.	0.6	58
160	Neural consequences of competing stimuli in both visual hemifields: A physiological basis for visual extinction. , 2000, 47, 440.		1
161	The Fate of Global Information in Dorsal Simultanagnosia. Neurocase, 2000, 6, 295-306.	0.6	9
162	Does auditory attention shift in the direction of an upcoming saccade?. Neuropsychologia, 1999, 37, 357-377.	1.6	66

#	Article	IF	CITATIONS
163	When a rubber hand â€~feels' what the real hand cannot. NeuroReport, 1999, 10, 135-138.	1.2	55
164	Motor role of human inferior parietal lobe revealed in unilateral neglect patients. Nature, 1998, 392, 179-182.	27.8	314
165	Phasic alerting of neglect patients overcomes their spatial deficit in visual awareness. Nature, 1998, 395, 169-172.	27.8	527
166	Visual extinction and prior entry: Impaired perception of temporal order with intact motion perception after unilateral parietal damage. Neuropsychologia, 1997, 35, 421-433.	1.6	204
167	Progression of Aphasia Severity in the Chronic Stages of Stroke. American Journal of Speech-Language Pathology, 0, , 1-11.	1.8	1