Qi Dong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6010059/publications.pdf

Version: 2024-02-01

109321 123424 4,032 72 35 61 citations h-index g-index papers 78 78 78 4688 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	High-entropy nanoparticles: Synthesis-structure-property relationships and data-driven discovery. Science, 2022, 376, eabn3103.	12.6	239
2	Stable iridium dinuclear heterogeneous catalysts supported on metal-oxide substrate for solar water oxidation. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 2902-2907.	7.1	229
3	Highâ€Entropy Metal Sulfide Nanoparticles Promise Highâ€Performance Oxygen Evolution Reaction. Advanced Energy Materials, 2021, 11, 2002887.	19.5	226
4	Why Do Lithium–Oxygen Batteries Fail: Parasitic Chemical Reactions and Their Synergistic Effect. Angewandte Chemie - International Edition, 2016, 55, 11344-11353.	13.8	186
5	Metal Halide Perovskites for Laser Applications. Advanced Functional Materials, 2021, 31, 2010144.	14.9	180
6	Denary oxide nanoparticles as highly stable catalysts for methane combustion. Nature Catalysis, 2021, 4, 62-70.	34.4	153
7	What Limits the Performance of Ta3N5 for Solar Water Splitting?. CheM, 2016, 1, 640-655.	11.7	143
8	Efficient Energy Funneling in Quasiâ€2D Perovskites: From Light Emission to Lasing. Advanced Materials, 2020, 32, e1906571.	21.0	134
9	Electrochemically Switchable Ring-Opening Polymerization of Lactide and Cyclohexene Oxide. Journal of the American Chemical Society, 2018, 140, 5686-5690.	13.7	127
10	High-throughput, combinatorial synthesis of multimetallic nanoclusters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 6316-6322.	7.1	119
11	Synthesis and electrocatalytic alcohol oxidation performance of Pd–Co bimetallic nanoparticles supported on graphene. International Journal of Hydrogen Energy, 2014, 39, 1325-1335.	7.1	102
12	Extreme mixing in nanoscale transition metal alloys. Matter, 2021, 4, 2340-2353.	10.0	102
13	Pd/Cu bimetallic nanoparticles supported on graphene nanosheets: Facile synthesis and application as novel electrocatalyst for ethanol oxidation in alkaline media. International Journal of Hydrogen Energy, 2014, 39, 14669-14679.	7.1	101
14	A high-entropy phosphate catalyst for oxygen evolution reaction. Nano Energy, 2021, 86, 106029.	16.0	100
15	Stable Multimetallic Nanoparticles for Oxygen Electrocatalysis. Nano Letters, 2019, 19, 5149-5158.	9.1	94
16	Continuous Synthesis of Hollow Highâ€Entropy Nanoparticles for Energy and Catalysis Applications. Advanced Materials, 2020, 32, e2002853.	21.0	93
17	Carbonâ€Supported Highâ€Entropy Oxide Nanoparticles as Stable Electrocatalysts for Oxygen Reduction Reactions. Advanced Functional Materials, 2021, 31, 2010561.	14.9	86
18	Scalable Synthesis of High Entropy Alloy Nanoparticles by Microwave Heating. ACS Nano, 2021, 15, 14928-14937.	14.6	85

#	Article	IF	CITATIONS
19	Achieving Low Overpotential Li–O ₂ Battery Operations by Li ₂ O ₂ Decomposition through One-Electron Processes. Nano Letters, 2015, 15, 8371-8376.	9.1	70
20	Cathodically Stable Li-O2 Battery Operations Using Water-in-Salt Electrolyte. CheM, 2018, 4, 1345-1358.	11.7	69
21	End-On Bound Iridium Dinuclear Heterogeneous Catalysts on WO ₃ for Solar Water Oxidation. ACS Central Science, 2018, 4, 1166-1172.	11.3	69
22	Free-standing porous carbon electrodes derived from wood for high-performance Li-O2 battery applications. Nano Research, 2017, 10, 4318-4326.	10.4	64
23	Programmable heating and quenching for efficient thermochemical synthesis. Nature, 2022, 605, 470-476.	27.8	61
24	Stamping Flexible Li Alloy Anodes. Advanced Materials, 2021, 33, e2005305.	21.0	58
25	Selective CO Production by Photoelectrochemical Methane Oxidation on TiO ₂ . ACS Central Science, 2018, 4, 631-637.	11.3	56
26	A Metal–Organic Framework Thin Film for Selective Mg ²⁺ Transport. Angewandte Chemie - International Edition, 2019, 58, 15313-15317.	13.8	56
27	Printable, high-performance solid-state electrolyte films. Science Advances, 2020, 6, .	10.3	54
28	Defect Passivation by Fullerene Derivative in Perovskite Solar Cells with Aluminum-Doped Zinc Oxide as Electron Transporting Layer. Chemistry of Materials, 2019, 31, 6833-6840.	6.7	50
29	Multi-principal elemental intermetallic nanoparticles synthesized via a disorder-to-order transition. Science Advances, 2022, 8, eabm4322.	10.3	49
30	Photo-Induced Performance Enhancement of Tantalum Nitride for Solar Water Oxidation. Joule, 2017, 1, 831-842.	24.0	46
31	Facet-Dependent Kinetics and Energetics of Hematite for Solar Water Oxidation Reactions. ACS Applied Materials & Distribution and Energetics of Hematite for Solar Water Oxidation Reactions. ACS Applied Materials & Distribution and Energetics of Hematite for Solar Water Oxidation Reactions. ACS Applied Materials & Distribution Reactions.	8.0	46
32	Role of H ₂ O in CO ₂ Electrochemical Reduction As Studied in a Water-in-Salt System. ACS Central Science, 2019, 5, 1461-1467.	11.3	46
33	Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts. CheM, 2021, 7, 2101-2117.	11.7	42
34	Rapid Synthesis of Highâ€Entropy Oxide Microparticles. Small, 2022, 18, e2104761.	10.0	41
35	Ultrafast Sintering of Solid-State Electrolytes with Volatile Fillers. ACS Energy Letters, 2021, 6, 3753-3760.	17.4	39
36	Understanding the Role of Ion Migration in the Operation of Perovskite Light-Emitting Diodes by Transient Measurements. ACS Applied Materials & Samp; Interfaces, 2020, 12, 48845-48853.	8.0	37

#	Article	IF	Citations
37	A rechargeable non-aqueous Mg-Br2 battery. Nano Energy, 2016, 28, 440-446.	16.0	36
38	Novel Bimodal Silver Nanowire Network as Top Electrodes for Reproducible and Highâ€Efficiency Semitransparent Organic Photovoltaics. Solar Rrl, 2020, 4, 2000328.	5.8	36
39	Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions. Angewandte Chemie - International Edition, 2021, 60, 19183-19190.	13.8	36
40	Directional Polarized Light Emission from Thinâ€Film Lightâ€Emitting Diodes. Advanced Materials, 2021, 33, e2006801.	21.0	35
41	Functionalizing Titanium Disilicide Nanonets with Cobalt Oxide and Palladium for Stable Li Oxygen Battery Operations. ACS Applied Materials & Samp; Interfaces, 2015, 7, 21948-21955.	8.0	34
42	Interface Engineering Between Multiâ€Elemental Alloy Nanoparticles and a Carbon Support Toward Stable Catalysts. Advanced Materials, 2022, 34, e2106436.	21.0	30
43	Rapid, Highâ€Temperature, In Situ Microwave Synthesis of Bulk Nanocatalysts. Small, 2019, 15, e1904881.	10.0	28
44	High‶emperature Ultrafast Sintering: Exploiting a New Kinetic Region to Fabricate Porous Solid‧tate Electrolyte Scaffolds. Advanced Materials, 2021, 33, e2100726.	21.0	24
45	Mild solution synthesis of graphene loaded with LiFePO ₄ –C nanoplatelets for high performance lithium ion batteries. New Journal of Chemistry, 2015, 39, 1094-1100.	2.8	23
46	Warum Lithiumâ€Sauerstoffâ€Batterien versagen: ParasitÃÆ chemische Reaktionen und ihr synergistischer Effekt. Angewandte Chemie, 2016, 128, 11514-11524.	2.0	22
47	Enabling rechargeable non-aqueous Mg–O ₂ battery operations with dual redox mediators. Chemical Communications, 2016, 52, 13753-13756.	4.1	22
48	Rapid, Universal Surface Engineering of Carbon Materials via Microwaveâ€Induced Carbothermal Shock. Advanced Functional Materials, 2021, 31, 2010968.	14.9	22
49	Fabrication of Cellulose–Graphite Foam via Ion Cross-linking and Ambient-Drying. Nano Letters, 2022, 22, 3931-3938.	9.1	21
50	Rapid Pressureless Sintering of Glasses. Small, 2022, 18, e2107951.	10.0	20
51	Thermal Radiation Synthesis of Ultrafine Platinum Nanoclusters toward Methanol Oxidation. Small Methods, 2020, 4, 2000265.	8.6	16
52	Dependence of interface energetics and kinetics on catalyst loading in a photoelectrochemical system. Nano Research, 2019, 12, 2378-2384.	10.4	15
53	A General Method for Regenerating Catalytic Electrodes. Joule, 2020, 4, 2374-2386.	24.0	15
54	Computationâ€Guided Synthesis of New Garnetâ€Type Solidâ€State Electrolytes via an Ultrafast Sintering Technique. Advanced Materials, 2020, 32, e2005059.	21.0	15

#	Article	IF	CITATIONS
55	Electrochemically switchable polymerization from surface-anchored molecular catalysts. Chemical Science, 2021, 12, 9042-9052.	7.4	15
56	Effect of sizing on the interfacial shear strength of carbon fiber/epoxy resin monofilament composite. Journal Wuhan University of Technology, Materials Science Edition, 2014, 29, 483-487.	1.0	14
57	Overcoming Immiscibility via a Milliseconds-Long "Shock―Synthesis toward Alloyed Nanoparticles. Matter, 2019, 1, 1451-1453.	10.0	13
58	Continuous Fly-Through High-Temperature Synthesis of Nanocatalysts. Nano Letters, 2021, 21, 4517-4523.	9.1	13
59	Rapid Atomic Ordering Transformation toward Intermetallic Nanoparticles. Nano Letters, 2022, 22, 255-262.	9.1	12
60	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, 7534-7539.	13.8	8
61	Catalysts in metal-air batteries. MRS Communications, 2018, 8, 372-386.	1.8	7
62	Light extraction in tandem organic light emitting diodes. Applied Physics Letters, 2021, 119 , .	3.3	6
63	Target-Sintering of Single-Phase Bulk Intermetallics via a Fast-Heating-Induced Rapid Interdiffusion Mechanism. , 2022, 4, 480-486.		6
64	Curved Mirror Arrays for Light Extraction in Top-Emitting Organic Light-Emitting Diodes. ACS Applied Materials & Samp; Interfaces, 2022, 14, 9377-9385.	8.0	5
65	Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, 7612-7617.	2.0	3
66	A Metal–Organic Framework Thin Film for Selective Mg ²⁺ Transport. Angewandte Chemie, 2019, 131, 15457-15461.	2.0	1
67	Frontispiece: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie - International Edition, 2021, 60, .	13.8	1
68	Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions. Angewandte Chemie, 2021, 133, 19332-19339.	2.0	1
69	Encased for a New Life. CheM, 2016, 1, 190-192.	11.7	0
70	Frontispiz: Electrochemically Triggered Chain Reactions for the Conversion of Furan Derivatives. Angewandte Chemie, 2021, 133, .	2.0	0
71	27â€4: Organic Lightâ€Emitting Diodes with Directional Polarized Light Emission. Digest of Technical Papers SID International Symposium, 2021, 52, 345-348.	0.3	0
72	Innentitelbild: Enabling Lithium Metal Anode in Nonflammable Phosphate Electrolyte with Electrochemically Induced Chemical Reactions (Angew. Chem. 35/2021). Angewandte Chemie, 2021, 133, 19042-19042.	2.0	O