List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6009693/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Unexpected stability of micrometer weakly viscoelastic jets. Physics of Fluids, 2022, 34, .	4.0	4
2	Strategies for the Biofunctionalization of Straining Flow Spinning Regenerated Bombyx mori Fibers. Molecules, 2022, 27, 4146.	3.8	1
3	Self-similar electrohydrodynamic solutions in multiple coaxial Taylor cones. Journal of Fluid Mechanics, 2021, 915, .	3.4	4
4	Electrical Conductivity of a Stretching Viscoelastic Filament. Materials, 2021, 14, 1294.	2.9	1
5	Diameter and charge of the first droplet emitted in electrospray. Physics of Fluids, 2021, 33, .	4.0	14
6	On the Ejection of Filaments of Polymer Solutions Triggered by a Micrometer-Scale Mixing Mechanism. Materials, 2021, 14, 3399.	2.9	6
7	The Natural Breakup Length of a Steady Capillary Jet: Application to Serial Femtosecond Crystallography. Crystals, 2021, 11, 990.	2.2	6
8	Transonic flow focusing: stability analysis and jet diameter. International Journal of Multiphase Flow, 2021, 142, 103720.	3.4	3
9	Effect of an axial electric field on the breakup of a leaky-dielectric liquid filament. Physics of Fluids, 2021, 33, .	4.0	8
10	On the physics of transient ejection from bubble bursting. Journal of Fluid Mechanics, 2021, 929, .	3.4	17
11	A numerical simulation of coaxial electrosprays. Journal of Fluid Mechanics, 2020, 885, .	3.4	11
12	Dripping, jetting and tip streaming. Reports on Progress in Physics, 2020, 83, 097001.	20.1	91
13	Regenerated Silk Fibers Obtained by Straining Flow Spinning for Guiding Axonal Elongation in Primary Cortical Neurons. ACS Biomaterials Science and Engineering, 2020, 6, 6842-6852.	5.2	10
14	Dynamics of formation of poly(vinyl alcohol) filaments with an energetically efficient micro-mixing mechanism. Physics of Fluids, 2020, 32, .	4.0	8
15	Whipping in gaseous flow focusing. International Journal of Multiphase Flow, 2020, 130, 103367.	3.4	9
16	Scaling Laws of an Exploding Liquid Column under an Intense Ultrashort X-Ray Pulse. Physical Review Letters, 2019, 123, 064501.	7.8	6
17	Flow blurring atomization of Poly(ethylene oxide) solutions below the coil overlap concentration. Journal of Aerosol Science, 2019, 137, 105429.	3.8	9
18	Nanometre-sized droplets from a gas dynamic virtual nozzle. Journal of Applied Crystallography, 2019, 52, 800-808.	4.5	5

#	Article	IF	CITATIONS
19	Electrospray cone-jet mode for weakly viscoelastic liquids. Physical Review E, 2019, 100, 043114.	2.1	4
20	Aerodynamically stabilized Taylor cone jets. Physical Review E, 2019, 100, 031101.	2.1	11
21	Production of regenerated silkworm silk fibers from aqueous dopes through straining flow spinning. Textile Reseach Journal, 2019, 89, 4554-4567.	2.2	7
22	Low temperature plasmas and electrosprays. Journal Physics D: Applied Physics, 2019, 52, 233001.	2.8	24
23	Emergence of supercontraction in regenerated silkworm (Bombyx mori) silk fibers. Scientific Reports, 2019, 9, 2398.	3.3	20
24	Flow Blurring-Enabled Production of Polymer Filaments from Poly(ethylene oxide) Solutions. ACS Omega, 2019, 4, 2693-2701.	3.5	13
25	A new fire shaping approach to produce highly axisymmetric and reproducible nozzles. Journal of Materials Processing Technology, 2019, 270, 241-253.	6.3	7
26	Evaluation of serial crystallographic structure determination within megahertz pulse trains. Structural Dynamics, 2019, 6, 064702.	2.3	26
27	Visualization and size-measurement of droplets generated by Flow Blurring® in a high-pressure environment. Aerosol Science and Technology, 2018, 52, 198-208.	3.1	11
28	Straining Flow Spinning of Artificial Silk Fibers: A Review. Biomimetics, 2018, 3, 29.	3.3	16
29	Pressure-Driven Filling of Closed-End Microchannel: Realization of Comb-Shaped Transducers for Acoustofluidics. Physical Review Applied, 2018, 10, .	3.8	13
30	Gañán-Calvo replies. Physical Review Letters, 2018, 121, 269402.	7.8	1
31	Megahertz serial crystallography. Nature Communications, 2018, 9, 4025.	12.8	147
32	The steady cone-jet mode of electrospraying close to the minimum volume stability limit. Journal of Fluid Mechanics, 2018, 857, 142-172.	3.4	34
33	Controlled cavity collapse: scaling laws of drop formation. Soft Matter, 2018, 14, 7671-7679.	2.7	10
34	Review on the physics of electrospray: From electrokinetics to the operating conditions of single and coaxial Taylor cone-jets, and AC electrospray. Journal of Aerosol Science, 2018, 125, 32-56.	3.8	182
35	Risk stratifiers for arrhythmic and non-arrhythmic mortality after acute myocardial infarction. Scientific Reports, 2018, 8, 9897.	3.3	1
36	Comparison of the effects of post-spinning drawing and wet stretching on regenerated silk fibers produced through straining flow spinning. Polymer, 2018, 150, 311-317.	3.8	21

#	Article	IF	CITATIONS
37	Novel swirl flow-focusing microfluidic device for the production of monodisperse microbubbles. Microfluidics and Nanofluidics, 2018, 22, 1.	2.2	3
38	Scaling laws of top jet drop size and speed from bubble bursting including gravity and inviscid limit. Physical Review Fluids, 2018, 3, .	2.5	24
39	Rapid sample delivery for megahertz serial crystallography at X-ray FELs. IUCrJ, 2018, 5, 574-584.	2.2	52
40	Active droplet sorting in microfluidics: a review. Lab on A Chip, 2017, 17, 751-771.	6.0	250
41	Production of High Performance Bioinspired Silk Fibers by Straining Flow Spinning. Biomacromolecules, 2017, 18, 1127-1133.	5.4	38
42	Global stability of axisymmetric flow focusing. Journal of Fluid Mechanics, 2017, 832, 329-344.	3.4	22
43	Straining flow spinning: Simplified model of a bioinspired process to mass produce regenerated silk fibers controllably. European Polymer Journal, 2017, 97, 26-39.	5.4	9
44	Revision of Bubble Bursting: Universal Scaling Laws of Top Jet Drop Size and Speed. Physical Review Letters, 2017, 119, 204502.	7.8	87
45	Effectiveness of flossing loops in the control of the gingival health. Journal of Clinical and Experimental Dentistry, 2017, 9, 0-0.	1.2	2
46	Straining flow spinning: production of regenerated silk fibers under a wide range of mild coagulating chemistries. Green Chemistry, 2017, 19, 3380-3389.	9.0	23
47	Universal structures of normal and pathological heart rate variability. Scientific Reports, 2016, 6, 21749.	3.3	7
48	Monosized dripping mode of axisymmetric flow focusing. Physical Review E, 2016, 94, 053122.	2.1	21
49	Automated droplet measurement (ADM): an enhanced video processing software for rapid droplet measurements. Microfluidics and Nanofluidics, 2016, 20, 1.	2.2	35
50	The onset of electrospray: the universal scaling laws of the first ejection. Scientific Reports, 2016, 6, 32357.	3.3	58
51	Effect of a Surrounding Liquid Environment on the Electrical Disruption of Pendant Droplets. Langmuir, 2016, 32, 6815-6824.	3.5	10
52	A hybrid flow focusing nozzle design to produce micron and sub-micron capillary jets. International Journal of Mass Spectrometry, 2016, 403, 32-38.	1.5	3
53	The production of viscoelastic capillary jets with gaseous flow focusing. Journal of Non-Newtonian Fluid Mechanics, 2016, 229, 8-15.	2.4	13
54	Active droplet generation in microfluidics. Lab on A Chip, 2016, 16, 35-58.	6.0	199

#	Article	IF	CITATIONS
55	Convective-to-absolute instability transition in a viscoelastic capillary jet subject to unrelaxed axial elastic tension. Physical Review E, 2015, 92, 023006.	2.1	12
56	Electrokinetic effects in the breakup of electrified jets: A Volume-Of-Fluid numerical study. International Journal of Multiphase Flow, 2015, 71, 14-22.	3.4	34
57	Massive, Generic, and Controlled Microencapsulation by Flow Focusing: Some Physicochemical Aspects and New Applications. Journal of Flow Chemistry, 2015, 5, 48-54.	1.9	6
58	Breakup length of AC electrified jets in a microfluidic flow-focusing junction. Microfluidics and Nanofluidics, 2015, 19, 787-794.	2.2	29
59	Acoustofluidic control of bubble size in microfluidic flow-focusing configuration. Lab on A Chip, 2015, 15, 996-999.	6.0	33
60	Stability of a rivulet flowing in a microchannel. International Journal of Multiphase Flow, 2015, 69, 1-7.	3.4	16
61	A novel technique to produce metallic microdrops for additive manufacturing. International Journal of Advanced Manufacturing Technology, 2014, 70, 1395-1402.	3.0	22
62	Isothermal dissolution of small rising bubbles in a low viscosity liquid. Chemical Engineering and Processing: Process Intensification, 2014, 85, 136-144.	3.6	5
63	How does a shear boundary layer affect the stability of a capillary jet?. Physics of Fluids, 2014, 26, .	4.0	8
64	Polarity effect on the electrohydrodynamic (EHD) spray of water. Journal of Aerosol Science, 2014, 76, 98-114.	3.8	38
65	Production of microbubbles from axisymmetric flow focusing in the jetting regime for moderate Reynolds numbers. Physical Review E, 2014, 89, 063012.	2.1	12
66	Shock waves and history in free fall. Physics Today, 2014, 67, 9-9.	0.3	1
67	On the validity and applicability of the one-dimensional approximation in cone-jet electrospray. Journal of Aerosol Science, 2013, 61, 60-69.	3.8	3
68	Absolute and convective instability of a charged viscoelastic liquid jet. Journal of Non-Newtonian Fluid Mechanics, 2013, 196, 58-69.	2.4	29
69	A new flow focusing technique to produce very thin jets. Journal of Micromechanics and Microengineering, 2013, 23, 065009.	2.6	26
70	Analysis and design process of a bi-membrane structure for micro-flow regulators. Microsystem Technologies, 2013, 19, 227-236.	2.0	3
71	A novel technique for producing metallic microjets and microdrops. Microfluidics and Nanofluidics, 2013, 14, 101-111.	2.2	13
72	Building functional materials for health care and pharmacy from microfluidic principles and Flow Focusing. Advanced Drug Delivery Reviews, 2013, 65, 1447-1469.	13.7	96

#	Article	IF	CITATIONS
73	Electro-hydrodynamic generation of monodisperse nanoparticles in the sub-10Ânm size range from strongly electrolytic salt solutions: governing parameters of scaling laws. Journal of Nanoparticle Research, 2013, 15, 1.	1.9	9
74	Theoretical investigation of a technique to produce microbubbles by a microfluidicTjunction. Physical Review E, 2013, 88, 033027.	2.1	15
75	The minimum or natural rate of flow and droplet size ejected by Taylor cone–jets: physical symmetries and scaling laws. New Journal of Physics, 2013, 15, 033035.	2.9	71
76	On the use of hypodermic needles in electrospray. EPJ Web of Conferences, 2013, 45, 01128.	0.3	2
77	Enhancement of the stability of the flow focusing technique for low-viscosity liquids. Journal of Micromechanics and Microengineering, 2012, 22, 115039.	2.6	13
78	Numerical simulation of electrospray in the cone-jet mode. Physical Review E, 2012, 86, 026305.	2.1	75
79	Focusing liquid microjets with nozzles. Journal of Micromechanics and Microengineering, 2012, 22, 065011.	2.6	31
80	Highly Integrable Flow Regulator With Positive Gain. Journal of Microelectromechanical Systems, 2011, 20, 12-14.	2.5	6
81	Absolute-convective instability transition of low permittivity, low conductivity charged viscous liquid jets under axial electric fields. Physics of Fluids, 2011, 23, .	4.0	21
82	Universal size and shape of viscous capillary jets: application to gas-focused microjets. Journal of Fluid Mechanics, 2011, 670, 427-438.	3.4	27
83	Experimental and numerical study of the recirculation flow inside a liquid meniscus focused by air. Microfluidics and Nanofluidics, 2011, 11, 65-74.	2.2	13
84	Generation of small mono-disperse bubbles in axisymmetric T-junction: The role of swirl. Physics of Fluids, 2011, 23, .	4.0	9
85	Global stability of the focusing effect of fluid jet flows. Physical Review E, 2011, 83, 036309.	2.1	41
86	On the validity of a universal solution for viscous capillary jets. Physics of Fluids, 2011, 23, .	4.0	15
87	Application of Flow Focusing to the Break-Up of a Magnetite Suspension Jet for the Production of Paramagnetic Microparticles. Journal of Nanomaterials, 2011, 2011, 1-10.	2.7	9
88	Liquid Capillary Micro/Nanojets in Freeâ€Jet Expansion. Small, 2010, 6, 822-824.	10.0	28
89	Analysis of the dripping–jetting transition in compound capillary jets. Journal of Fluid Mechanics, 2010, 649, 523-536.	3.4	48
90	Absolute lateral instability in capillary coflowing jets. Physics of Fluids, 2010, 22, 064104.	4.0	14

#	Article	IF	CITATIONS
91	Global and local instability of flow focusing: The influence of the geometry. Physics of Fluids, 2010, 22, .	4.0	72
92	Absolute to convective instability transition in charged liquid jets. Physics of Fluids, 2010, 22, .	4.0	20
93	An operational calculus framework to characterize droplet size populations from turbulent breakup by a small number of parameters. Journal of Physics A: Mathematical and Theoretical, 2010, 43, 185501.	2.1	2
94	Micrometer glass nozzles for flow focusing. Journal of Micromechanics and Microengineering, 2010, 20, 075035.	2.6	22
95	Making Drops in Microencapsulation Processes. Letters in Drug Design and Discovery, 2010, 7, 300-309.	0.7	10
96	Publisher's Note: Revision of capillary cone-jet physics: Electrospray and flow focusing [Phys. Rev. E79, 066305 (2009)]. Physical Review E, 2009, 79, .	2.1	3
97	Reduction of droplet-size dispersion in parallel flow-focusing microdevices using a passive method. Journal of Micromechanics and Microengineering, 2009, 19, 045029.	2.6	10
98	Swirl flow focusing: A novel procedure for the massive production of monodisperse microbubbles. Physics of Fluids, 2009, 21, 042003.	4.0	17
99	Development and characterization of a Flow Focusing multi nebulization system for sample introduction in ICP-based spectrometric techniques. Journal of Analytical Atomic Spectrometry, 2009, 24, 1213.	3.0	19
100	Revision of capillary cone-jet physics: Electrospray and flow focusing. Physical Review E, 2009, 79, 066305.	2.1	144
101	Synthesis of lidocaine-loaded PLGA microparticles by flow focusing. International Journal of Pharmaceutics, 2008, 358, 27-35.	5.2	73
102	Liquid flow focused by a gas: Jetting, dripping, and recirculation. Physical Review E, 2008, 78, 036323.	2.1	80
103	Turbulence in pneumatic flow focusing and flow blurring regimes. Physical Review E, 2008, 77, 036321.	2.1	48
104	Spatiotemporal instability of a confined capillary jet. Physical Review E, 2008, 78, 046312.	2.1	41
105	Stability of coflowing capillary jets under nonaxisymmetric perturbations. Physical Review E, 2008, 77, 046301.	2.1	10
106	Unconditional jetting. Physical Review E, 2008, 78, 026304.	2.1	28
107	Viscoelastic effects on the jetting–dripping transition in co-flowing capillary jets. Journal of Fluid Mechanics, 2008, 610, 249-260.	3.4	17
108	Electro-Flow Focusing: The High-Conductivity Low-Viscosity Limit. Physical Review Letters, 2007, 98, 134503.	7.8	41

#	Article	IF	CITATIONS
109	Absolute instability of a viscous hollow jet. Physical Review E, 2007, 75, 027301.	2.1	12
110	Stability Analysis and Fabrication Process of a Multiple Flow Focusing Microdevice Built in SU-8. , 2007, , .		1
111	Silicon Microdevice for Emulsion Production Using Three-Dimensional Flow Focusing. Journal of Microelectromechanical Systems, 2007, 16, 1201-1208.	2.5	18
112	Towards a Microsytem of Multiple Production of Micro-Drops Manufactured on Silicon. , 2007, , .		0
113	Microfluidic Codecs. Small, 2007, 3, 1140-1142.	10.0	1
114	Focusing capillary jets close to the continuum limit. Nature Physics, 2007, 3, 737-742.	16.7	111
115	Flow focusing pneumatic nebulizer in comparison with several micronebulizers in inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2006, 21, 770-777.	3.0	24
116	Behaviour of a flow focusing pneumatic nebulizer with high total dissolved solids solution on radially- and axially-viewed inductively coupled plasma atomic emission spectrometry. Journal of Analytical Atomic Spectrometry, 2006, 21, 1072-1075.	3.0	16
117	The combination of electrospray and flow focusing. Journal of Fluid Mechanics, 2006, 566, 421.	3.4	62
118	Jetting–dripping transition of a liquid jet in a lower viscosity co-flowing immiscible liquid: the minimum flow rate in flow focusing. Journal of Fluid Mechanics, 2006, 553, 75.	3.4	87
119	Straightforward production of encoded microbeads by Flow Focusing: Potential applications for biomolecule detection. International Journal of Pharmaceutics, 2006, 324, 19-26.	5.2	24
120	Towards High-Throughput Production of Uniformly Encoded Microparticles. Advanced Materials, 2006, 18, 559-564.	21.0	70
121	Bubbling in Unbounded Coflowing Liquids. Physical Review Letters, 2006, 96, 124504.	7.8	45
122	<title>Integrable silicon microsystem for three-dimensional flow focusing</title> ., 2005, , .		0
123	Integrable silicon microfluidic valve with pneumatic actuation. Sensors and Actuators A: Physical, 2005, 118, 144-151.	4.1	22
124	Polyphonic microfluidics. Nature Physics, 2005, 1, 139-140.	16.7	2
125	Flow Focusing: A Versatile Technology to Produce Size-Controlled and Specific-Morphology Microparticles. Small, 2005, 1, 688-692.	10.0	185
126	A note on the small oscillation regimes of rotating liquid bridges: Transition from surface to internal wave modes. Physics of Fluids, 2005, 17, 012101-012101-6.	4.0	4

#	Article	IF	CITATIONS
127	Linear stability analysis of axisymmetric perturbations in imperfectly conducting liquid jets. Physics of Fluids, 2005, 17, 034106.	4.0	66
128	Monodisperse structured multi-vesicle microencapsulation using flow-focusing and controlled disturbance. Journal of Microencapsulation, 2005, 22, 745-759.	2.8	51
129	Enhanced liquid atomization: From flow-focusing to flow-blurring. Applied Physics Letters, 2005, 86, 214101.	3.3	124
130	Integrable silicon microfluidic valve with pneumatic actuation. Sensors and Actuators A: Physical, 2005, 118, 144-151.	4.1	11
131	Coarsening of monodisperse wet microfoams. Applied Physics Letters, 2004, 84, 4989-4991.	3.3	30
132	Steady high viscosity liquid micro-jet production and fiber spinning using co-flowing gas conformation. European Physical Journal B, 2004, 39, 131-137.	1.5	23
133	A new device for the generation of microbubbles. Physics of Fluids, 2004, 16, 2828-2834.	4.0	99
134	Preliminary characterization and fundamental properties of aerosols generated by a flow focusing pneumatic nebulizer. Journal of Analytical Atomic Spectrometry, 2004, 19, 1340-1346.	3.0	23
135	Perfectly monodisperse microbubbling by capillary flow focusing: An alternate physical description and universal scaling. Physical Review E, 2004, 69, 027301.	2.1	106
136	A note on charged capillary jet breakup of conducting liquids: experimental validation of a viscous one-dimensional model. Journal of Fluid Mechanics, 2004, 501, 303-326.	3.4	72
137	On the general scaling theory for electrospraying. Journal of Fluid Mechanics, 2004, 507, 203-212.	3.4	142
138	Micro/Nano Encapsulation via Electrified Coaxial Liquid Jets. Science, 2002, 295, 1695-1698.	12.6	960
139	Linear stability of co-flowing liquid–gas jets. Journal of Fluid Mechanics, 2001, 448, 23-51.	3.4	75
140	Monodisperse microbubbling: Absolute instabilities in coflowing gas–liquid jets. Physics of Fluids, 2001, 13, 3839-3842.	4.0	45
141	Perfectly Monodisperse Microbubbling by Capillary Flow Focusing. Physical Review Letters, 2001, 87, 274501.	7.8	488
142	The role of the electrical conductivity and viscosity on the motions inside Taylor cones. Journal of Electrostatics, 1999, 47, 13-26.	1.9	56
143	A novel pneumatic technique to generate steady capillary microjets. Journal of Aerosol Science, 1999, 30, 117-125.	3.8	70
144	ONE-DIMENSIONAL SIMULATION OF THE BREAKUP OF CAPILLARY JETS OF CONDUCTING LIQUIDS. APPLICATION TO E.H.D. SPRAYING. Journal of Aerosol Science, 1999, 30, 895-912.	3.8	61

#	Article	IF	CITATIONS
145	THE SURFACE CHARGE IN ELECTROSPRAYING: ITS NATURE AND ITS UNIVERSAL SCALING LAWS. Journal of Aerosol Science, 1999, 30, 863-872.	3.8	190
146	The universal nature and scaling law of the surface charge in electrospraying. Journal of Aerosol Science, 1998, 29, S975-S976.	3.8	6
147	A perfectly steady fluid micro-thread finds its way through a microscopic hole without touching its walls. The tale of a new nebulizer/emulsifier. Journal of Aerosol Science, 1998, 29, S1071-S1072.	3.8	4
148	Low and high Reynolds number flows inside Taylor cones. Physical Review E, 1998, 58, 7309-7314.	2.1	59
149	Generation of Steady Liquid Microthreads and Micron-Sized Monodisperse Sprays in Gas Streams. Physical Review Letters, 1998, 80, 285-288.	7.8	463
150	On the theory of electrohydrodynamically driven capillary jets. Journal of Fluid Mechanics, 1997, 335, 165-188.	3.4	151
151	Current and droplet size in the electrospraying of liquids. Scaling laws. Journal of Aerosol Science, 1997, 28, 249-275.	3.8	680
152	Cone-Jet Analytical Extension of Taylor's Electrostatic Solution and the Asymptotic Universal Scaling Laws in Electrospraying. Physical Review Letters, 1997, 79, 217-220.	7.8	312
153	The role of liquid viscosity and electrical conductivity on the motions inside Taylor cones in E.H.D. spraying of liquids. Journal of Aerosol Science, 1996, 27, S175-S176.	3.8	11
154	A global model for the electrospraying of liquids in steady cone-jet mode. Journal of Aerosol Science, 1996, 27, S179-S180.	3.8	12
155	The equilibrium shapes of liquid menisci emitting liquid and charges in steady cone-jet mode. Journal of Aerosol Science, 1996, 27, S187-S188.	3.8	1
156	Zeroth-order, electrohydrostatic solution for electrospraying in cone-jet mode. Journal of Aerosol Science, 1994, 25, 1065-1077.	3.8	114
157	The electrostatic spray emitted from an electrified conical meniscus. Journal of Aerosol Science, 1994, 25, 1121-1142.	3.8	153
158	20.0.05 The size and charge of droplets in the electrospraying of polar liquids in cone-jet mode, and the minimum droplet size. Journal of Aerosol Science, 1994, 25, 309-310.	3.8	47
159	The dynamics of bubbles in periodic vortex flowss. Flow, Turbulence and Combustion, 1993, 51, 285-290.	0.2	11
160	04 O 01 The electrohydrodynamics of electrified conical menisci. Journal of Aerosol Science, 1993, 24, S19-S20.	3.8	21
161	On the dynamics of buoyant and heavy particles in a periodic Stuart vortex flow. Journal of Fluid Mechanics, 1993, 254, 671-699.	3.4	56
162	The dynamics of small, heavy, rigid spherical particles in a periodic Stuart vortex flow. Physics of Fluids A, Fluid Dynamics, 1993, 5, 1679-1693.	1.6	31

#	Article	IF	CITATIONS
163	The Dynamics of Bubbles in Periodic Vortex Flowss. Fluid Mechanics and Its Applications, 1993, , 285-290.	0.2	3
164	Oscillations of liquid captive rotating drops. Journal of Fluid Mechanics, 1991, 226, 63-89.	3.4	20
165	The dynamics and mixing of small spherical particles in a plane, free shear layer. Physics of Fluids A, Fluid Dynamics, 1991, 3, 1207-1217.	1.6	45