Janie Corley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6008999/publications.pdf

Version: 2024-02-01

90 papers

9,809 citations

43 h-index 92 g-index

99 all docs 99 docs citations 99 times ranked 17442 citing authors

#	Article	IF	CITATIONS
1	DNA methylation age of blood predicts all-cause mortality in later life. Genome Biology, 2015, 16, 25.	8.8	928
2	Age-associated cognitive decline. British Medical Bulletin, 2009, 92, 135-152.	6.9	857
3	Genome-wide association studies establish that human intelligence is highly heritable and polygenic. Molecular Psychiatry, 2011, 16, 996-1005.	7.9	571
4	Rare and low-frequency coding variants alter human adult height. Nature, 2017, 542, 186-190.	27.8	544
5	Brain age predicts mortality. Molecular Psychiatry, 2018, 23, 1385-1392.	7.9	513
6	Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function. Nature Communications, 2018, 9, 2098.	12.8	484
7	The epigenetic clock is correlated with physical and cognitive fitness in the Lothian Birth Cohort 1936. International Journal of Epidemiology, 2015, 44, 1388-1396.	1.9	472
8	Genetic contributions to variation in general cognitive function: a meta-analysis of genome-wide association studies in the CHARGE consortium (N=53 949). Molecular Psychiatry, 2015, 20, 183-192.	7.9	344
9	Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nature Genetics, 2018, 50, 26-41.	21.4	286
10	Association of Body Mass Index with DNA Methylation and Gene Expression in Blood Cells and Relations to Cardiometabolic Disease: A Mendelian Randomization Approach. PLoS Medicine, 2017, 14, e1002215.	8.4	246
11	Genetic contributions to stability and change in intelligence from childhood to old age. Nature, 2012, 482, 212-215.	27.8	228
12	Total MRI load of cerebral small vessel disease and cognitive ability in older people. Neurobiology of Aging, 2015, 36, 2806-2811.	3.1	199
13	DNA methylation-based estimator of telomere length. Aging, 2019, 11, 5895-5923.	3.1	198
14	Genetic and environmental exposures constrain epigenetic drift over the human life course. Genome Research, 2014, 24, 1725-1733.	5.5	152
15	Home garden use during COVID-19: Associations with physical and mental wellbeing in older adults. Journal of Environmental Psychology, 2021, 73, 101545.	5.1	151
16	A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Molecular Psychiatry, 2014, 19, 76-87.	7.9	142
17	Cigarette smoking and thinning of the brain's cortex. Molecular Psychiatry, 2015, 20, 778-785.	7.9	136
18	Which Social Network or Support Factors are Associated with Cognitive Abilities in Old Age?. Gerontology, 2013, 59, 454-463.	2.8	125

#	Article	IF	Citations
19	Childhood Socioeconomic Position and Objectively Measured Physical Capability Levels in Adulthood: A Systematic Review and Meta-Analysis. PLoS ONE, 2011, 6, e15564.	2.5	121
20	Polygenic Risk for Schizophrenia Is Associated with Cognitive Change Between Childhood and Old Age. Biological Psychiatry, 2013, 73, 938-943.	1.3	118
21	Circulating Inflammatory Markers Are Associated With Magnetic Resonance Imaging-Visible Perivascular Spaces But Not Directly With White Matter Hyperintensities. Stroke, 2014, 45, 605-607.	2.0	113
22	Predictors of ageing-related decline across multiple cognitive functions. Intelligence, 2016, 59, 115-126.	3.0	112
23	Mediterranean-type diet and brain structural change from 73 to 76 years in a Scottish cohort. Neurology, 2017, 88, 449-455.	1.1	109
24	Associations of Mitochondrial and Nuclear Mitochondrial Variants and Genes with Seven Metabolic Traits. American Journal of Human Genetics, 2019, 104, 112-138.	6.2	106
25	Childhood cognitive ability accounts for associations between cognitive ability and brain cortical thickness in old age. Molecular Psychiatry, 2014, 19, 555-559.	7.9	104
26	Beyond a bigger brain: Multivariable structural brain imaging and intelligence. Intelligence, 2015, 51, 47-56.	3.0	101
27	Coupled Changes in Brain White Matter Microstructure and Fluid Intelligence in Later Life. Journal of Neuroscience, 2015, 35, 8672-8682.	3.6	97
28	Impact of small vessel disease in the brain on gait and balance. Scientific Reports, 2017, 7, 41637.	3.3	86
29	Associations of autozygosity with a broad range of human phenotypes. Nature Communications, 2019, 10, 4957.	12.8	84
30	Meta-analysis of up to 622,409 individuals identifies 40 novel smoking behaviour associated genetic loci. Molecular Psychiatry, 2020, 25, 2392-2409.	7.9	83
31	Brain volumetric changes and cognitive ageing during the eighth decade of life. Human Brain Mapping, 2015, 36, 4910-4925.	3.6	79
32	An epigenetic predictor of death captures multi-modal measures of brain health. Molecular Psychiatry, 2021, 26, 3806-3816.	7.9	77
33	Reverse causation in activity-cognitive ability associations: The Lothian Birth Cohort 1936 Psychology and Aging, 2012, 27, 250-255.	1.6	72
34	Vascular risk factors and progression of white matter hyperintensities in the Lothian Birth Cohort 1936. Neurobiology of Aging, 2016, 42, 116-123.	3.1	72
35	Exome Chip Meta-analysis Fine Maps Causal Variants and Elucidates the Genetic Architecture of Rare Coding Variants in Smoking and AlcoholÂUse. Biological Psychiatry, 2019, 85, 946-955.	1.3	69
36	Psychosocial factors and health as determinants of quality of life in community-dwelling older adults. Quality of Life Research, 2012, 21, 505-516.	3.1	68

#	Article	IF	CITATIONS
37	Association of allostatic load with brain structure and cognitive ability in later life. Neurobiology of Aging, 2015, 36, 1390-1399.	3.1	67
38	Caffeine Consumption and Cognitive Function at Age 70: The Lothian Birth Cohort 1936 Study. Psychosomatic Medicine, 2010, 72, 206-214.	2.0	57
39	Psychological and physical health at age 70 in the Lothian Birth Cohort 1936: Links with early life IQ, SES, and current cognitive function and neighborhood environment Health Psychology, 2011, 30, 1-11.	1.6	55
40	Healthy cognitive ageing in the Lothian Birth Cohort studies: marginal gains not magic bullet. Psychological Medicine, 2018, 48, 187-207.	4.5	51
41	Computational quantification of brain perivascular space morphologies: Associations with vascular risk factors and white matter hyperintensities. A study in the Lothian Birth Cohort 1936. NeuroImage: Clinical, 2020, 25, 102120.	2.7	51
42	Incidental Findings on Brain MR Imaging in Older Community-Dwelling Subjects Are Common but Serious Medical Consequences Are Rare: A Cohort Study. PLoS ONE, 2013, 8, e71467.	2.5	49
43	Smoking, childhood IQ, and cognitive function in old age. Journal of Psychosomatic Research, 2012, 73, 132-138.	2.6	48
44	Associations between Dietary Inflammatory Index Scores and Inflammatory Biomarkers among Older Adults in the Lothian Birth Cohort 1936 Study. Journal of Nutrition, Health and Aging, 2019, 23, 628-636.	3.3	48
45	Change in Physical Activity, Sleep Quality, and Psychosocial Variables during COVID-19 Lockdown: Evidence from the Lothian Birth Cohort 1936. International Journal of Environmental Research and Public Health, 2021, 18, 210.	2.6	47
46	Associations between education and brain structure at age 73 years, adjusted for age 11 IQ. Neurology, 2016, 87, 1820-1826.	1.1	46
47	Do dietary patterns influence cognitive function in old age?. International Psychogeriatrics, 2013, 25, 1393-1407.	1.0	45
48	Brain cortical characteristics of lifetime cognitive ageing. Brain Structure and Function, 2018, 223, 509-518.	2.3	44
49	Neurology-related protein biomarkers are associated with cognitive ability and brain volume in older age. Nature Communications, 2020, $11,800$.	12.8	42
50	Antioxidant and B vitamin intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. European Journal of Clinical Nutrition, 2011, 65, 619-626.	2.9	41
51	Risk and protective factors for structural brain ageing in the eighth decade of life. Brain Structure and Function, 2017, 222, 3477-3490.	2.3	40
52	Personality, health, and brain integrity: The Lothian Birth Cohort Study 1936 Health Psychology, 2014, 33, 1477-1486.	1.6	38
53	Polygenic predictors of age-related decline in cognitive ability. Molecular Psychiatry, 2020, 25, 2584-2598.	7.9	38
54	Alcohol intake and cognitive abilities in old age: The Lothian Birth Cohort 1936 study Neuropsychology, 2011, 25, 166-175.	1.3	37

#	Article	IF	Citations
55	Dietary factors and biomarkers of systemic inflammation in older people: the Lothian Birth Cohort 1936. British Journal of Nutrition, 2015, 114, 1088-1098.	2.3	37
56	Longitudinal telomere length shortening and cognitive and physical decline in later life: The Lothian Birth Cohorts 1936 and 1921. Mechanisms of Ageing and Development, 2016, 154, 43-48.	4.6	37
57	Is body mass index in old age related to cognitive abilities? The Lothian Birth Cohort 1936 Study Psychology and Aging, 2010, 25, 867-875.	1.6	35
58	Progression of White Matter Disease and Cortical Thinning Are Not Related in Older Community-Dwelling Subjects. Stroke, 2016, 47, 410-416.	2.0	35
59	Flavonoid intake in relation to cognitive function in later life in the Lothian Birth Cohort 1936. British Journal of Nutrition, 2011, 106, 141-148.	2.3	34
60	Brain white matter tract integrity and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort, 1936 Neuropsychology, 2013, 27, 595-607.	1.3	34
61	Epigenetic signatures of smoking associate with cognitive function, brain structure, and mental and physical health outcomes in the Lothian Birth Cohort 1936. Translational Psychiatry, 2019, 9, 248.	4.8	34
62	Age-related gene expression changes, and transcriptome wide association study of physical and cognitive aging traits, in the Lothian Birth Cohort 1936. Aging, 2017, 9, 2489-2503.	3.1	33
63	Three major dimensions of human brain cortical ageing in relation to cognitive decline across the eighth decade of life. Molecular Psychiatry, 2021, 26, 2651-2662.	7.9	29
64	Sleep and brain morphological changes in the eighth decade of life. Sleep Medicine, 2020, 65, 152-158.	1.6	27
65	Retinal microvascular network geometry and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort 1936 study. British Journal of Ophthalmology, 2017, 101, 993-998.	3.9	25
66	Dietary patterns, cognitive function, and structural neuroimaging measures of brain aging. Experimental Gerontology, 2020, 142, 111117.	2.8	23
67	Serum cholesterol and cognitive functions: the Lothian Birth Cohort 1936. International Psychogeriatrics, 2015, 27, 439-453.	1.0	22
68	Genetic Copy Number Variation and General Cognitive Ability. PLoS ONE, 2012, 7, e37385.	2.5	21
69	Coupled changes in hippocampal structure and cognitive ability in later life. Brain and Behavior, 2018, 8, e00838.	2.2	21
70	The complex genetics of gait speed: genome-wide meta-analysis approach. Aging, 2017, 9, 209-246.	3.1	21
71	Interaction of APOE e4 and poor glycemic control predicts white matter hyperintensity growth from 73 to 76. Neurobiology of Aging, 2017, 54, 54-58.	3.1	20
72	Association between carotid atheroma and cerebral cortex structure at age 73 years. Annals of Neurology, 2018, 84, 576-587.	5.3	20

#	Article	IF	Citations
73	Early life characteristics and late life burden of cerebral small vessel disease in the Lothian Birth Cohort 1936. Aging, 2016, 8, 2039-2061.	3.1	20
74	Inflammation as a risk factor for the development of frailty in the Lothian Birth Cohort 1936. Experimental Gerontology, 2020, 139, 111055.	2.8	19
75	Cerebral small vessel disease burden and longitudinal cognitive decline from age 73 to 82: the Lothian Birth Cohort 1936. Translational Psychiatry, 2021, 11, 376.	4.8	19
76	Predictors of gait speed and its change over three years in community-dwelling older people. Aging, 2018, 10, 144-153.	3.1	19
77	Fluid Intelligence Predicts Change in Depressive Symptoms in Later Life: The Lothian Birth Cohort 1936. Psychological Science, 2018, 29, 1984-1995.	3.3	15
78	Impact of COVID-19 lockdown on psychosocial factors, health, and lifestyle in Scottish octogenarians: The Lothian Birth Cohort 1936 study. PLoS ONE, 2021, 16, e0253153.	2.5	12
79	Dietary iodine exposure and brain structures and cognition in older people. Exploratory analysis in the Lothian Birth Cohort 1936. Journal of Nutrition, Health and Aging, 2017, 21, 971-979.	3.3	11
80	Brain structural differences between 73- and 92-year olds matched for childhood intelligence, social background, and intracranial volume. Neurobiology of Aging, 2018, 62, 146-158.	3.1	11
81	Adherence to the MIND diet is associated with 12 -year all-cause mortality in older adults. Public Health Nutrition, 2020, , 1 - 10 .	2.2	10
82	Exploratory analysis of dietary intake and brain iron accumulation detected using magnetic resonance imaging in older individuals: The Lothian Birth Cohort 1936. Journal of Nutrition, Health and Aging, 2015, 19, 64-69.	3.3	9
83	Fluctuating asymmetry in brain structure and general intelligence in 73-year-olds. Intelligence, 2020, 78, 101407.	3.0	9
84	Apolipoprotein E genotype does not moderate the associations of depressive symptoms, neuroticism and allostatic load with cognitive ability and cognitive aging in the Lothian Birth Cohort 1936. PLoS ONE, 2018, 13, e0192604.	2.5	7
85	Reaction time variability and brain white matter integrity Neuropsychology, 2019, 33, 642-657.	1.3	6
86	Associations between total MRI-visible small vessel disease burden and domain-specific cognitive abilities in a community-dwelling older-age cohort. Neurobiology of Aging, 2021, 105, 25-34.	3.1	5
87	Contribution of white matter hyperintensities to ventricular enlargement in older adults. NeuroImage: Clinical, 2022, 34, 103019.	2.7	4
88	Dietary patterns and trajectories of global- and domain-specific cognitive decline in the Lothian Birth Cohort 1936. British Journal of Nutrition, 2021, 126, 1237-1246.	2.3	3
89	Mediterranean-Type Diet and Brain Structural Change from 73 to 79 Years in the Lothian Birth Cohort 1936. Journal of Nutrition, Health and Aging, 2022, 26, 368-372.	3.3	1
90	"Brain white matter tract integrity and cognitive abilities in community-dwelling older people: The Lothian Birth Cohort, 1936― Correction to Booth et al. (2013) Neuropsychology, 2013, 27, 701-701.	1.3	0