
Ishmuratov Gumer Yu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6008020/publications.pdf Version: 2024-02-01

ISHMUDATOV CUMED YU

#	Article	IF	CITATIONS
1	Effect of betulin and betulonic acid on isolated rat liver mitochondria and liposomes. Biochimica Et Biophysica Acta - Biomembranes, 2020, 1862, 183383.	2.6	27
2	Transformations of peroxide products of olefins ozonolysis. Russian Journal of Organic Chemistry, 2010, 46, 1593-1621.	0.8	24
3	Sulfur-Containing Derivatives of Mono- and Bicyclic Natural Monoterpenoids. Chemistry of Natural Compounds, 2014, 50, 22-47.	0.8	18
4	Synthesis and antimalarial activity of 3′-trifluoromethylated 1,2,4-trioxolanes and 1,2,4,5-tetraoxane based on deoxycholic acid. Steroids, 2018, 129, 17-23.	1.8	16
5	Chemiluminescence from the biomimetic reaction of 1,2,4-trioxolanes and 1,2,4,5-tetroxanes with ferrous ions. RSC Advances, 2012, 2, 107-110.	3.6	15
6	Ozonolysis of unsaturated compounds in the synthesis of insect pheromones and juvenoids. Russian Chemical Reviews, 1995, 64, 541-568.	6.5	14
7	Title is missing!. Russian Journal of Organic Chemistry, 2001, 37, 37-39.	0.8	12
8	Synthesis of 10-Hydroxy- and 9-Oxo-2e-Decenoic Acids from Oleic Acid. Chemistry of Natural Compounds, 2002, 38, 145-148.	0.8	11
9	Ozonolysis of alkenes and study of reactions of polyfunctional compounds: LXVIII. Investigation of transformations of peroxide products of olefins ozonolysis treated with hydroxylamine hydrochloride. Russian Journal of Organic Chemistry, 2007, 43, 1114-1119.	0.8	11
10	Chemiluminescence as a base for a new approach to the study of pharmacologically promising peroxide agents. Doklady Chemistry, 2011, 436, 34-38.	0.9	10
11	Transformations of peroxide olefin ozonolysis products under the action of hydroxylamine and semicarbazide hydrochlorides in isopropyl alcohol. Russian Journal of Organic Chemistry, 2013, 49, 1409-1414.	0.8	10
12	Transformation of peroxide products of olefin ozonolysis under treatment with hydroxylamine and semicarbazide hydrochlorides in acetic acid. Russian Journal of Organic Chemistry, 2014, 50, 1075-1081.	0.8	10
13	Ozonolysis of Unsaturated Compounds in the Synthesis of Insect Pheromones and Juvenoids. Chemistry of Natural Compounds, 2015, 51, 199-219.	0.8	10
14	10-Undecenoic acid in the synthesis of insect pheromones. Chemistry of Natural Compounds, 2000, 36, 105-119.	0.8	9
15	(R)-4-Menthenone in the synthesis of optically pure sex pheromone of the peach leafminer moth (Lyonetia clerkella). Russian Chemical Bulletin, 2003, 52, 2267-2269.	1.5	9
16	Transformations of peroxide ozonolysis products of natural olefins by N-containing organic compounds in methanol. Chemistry of Natural Compounds, 2009, 45, 318-321.	0.8	9
17	Ozonolytic transformations of (S)-(â^')-limonene. Russian Journal of Organic Chemistry, 2012, 48, 18-24.	0.8	9
18	Synthesis of 9-Oxo- and 10-Hydroxy-2E-decenoic Acids. Chemistry of Natural Compounds, 2002, 38, 1-23.	0.8	8

#	Article	IF	CITATIONS
19	Ozonolytic Decyclization of (R)-4-Menthen-3-one. Russian Journal of Organic Chemistry, 2002, 38, 1005-1008.	0.8	8
20	Synthesis of the Promising Chiral Synthon Isopropyl-4R-Methyl-6-Iodohexanoate from L-(-)-Menthol. Chemistry of Natural Compounds, 2005, 41, 41-44.	0.8	8
21	Synthesis of Betulonic and Betulinic Acids from Betulin. Chemistry of Natural Compounds, 2018, 54, 795-797.	0.8	8
22	Transformations of Peroxide Products of Alkene Ozonolysis. Russian Journal of Organic Chemistry, 2019, 55, 47-73.	0.8	8
23	Monoterpenoids in the synthesis of optically active insect pheromones. Russian Chemical Reviews, 1997, 66, 987-1015.	6.5	7
24	Title is missing!. Chemistry of Natural Compounds, 2003, 39, 28-30.	0.8	7
25	Monoterpene ketones in the synthesis of optically active insect pheromones. Russian Journal of Bioorganic Chemistry, 2012, 38, 667-688.	1.0	7
26	Synthesis from (–)-α-Pinene of an Optically Active Macrocyclic Diesterdihydrazide with 2,6-Pyridinedicarboxylic and Adipic Acid Moities. Chemistry of Natural Compounds, 2017, 53, 63-65.	0.8	7
27	Synthesis of Macrolides with Nitrogen-Containing Fragments. Macroheterocycles, 2011, , 270-310.	0.5	7
28	Optically pure acyclic bifunctional compounds from (?)-menthone. Synthesis ofR-4-methyl-1-nonanol, the sex pheromone of the larger flour beetle (Tenebrio molitor L.). Russian Chemical Bulletin, 1993, 42, 1244-1245.	1.5	6
29	A new method for the direct reduction of products of ozonolysis of 1-alkylcycloalkenes to ketols. Russian Chemical Bulletin, 1999, 48, 197-198.	1.5	6
30	Novel reaction in the chemistry of organoaluminum compounds. Russian Journal of Organic Chemistry, 2011, 47, 472-473.	0.8	6
31	Synthesis of macrolides containing an azine or hydrazide fragment via successive tishchenko disproportionation and [1 + 1]-condensation. Russian Journal of Organic Chemistry, 2011, 47, 1410-1415.	0.8	6
32	Synthesis of macrocyclic azino and dihydrazido diesters by consecutive [2 + 1]- and [1 + 1]-condensations. Russian Journal of Organic Chemistry, 2011, 47, 1416-1425.	0.8	6
33	Oxidation of bicyclic monoterpene ketones with Caro's acid. Russian Journal of Organic Chemistry, 2012, 48, 1210-1215.	0.8	6
34	Transformations of peroxide olefin ozonolysis products in methanol in the presence of water. Russian Journal of Organic Chemistry, 2013, 49, 1415-1419.	0.8	6
35	Versions of new reaction in the chemistry of organoaluminum compounds. Russian Journal of Organic Chemistry, 2014, 50, 1704-1707.	0.8	6
36	Transformations of peroxide products of olefin ozonolysis in tetrahydrofuran in reactions with hydroxylamine and semicarbazide hydrochlorides. Russian Journal of Organic Chemistry, 2014, 50, 928-933.	0.8	6

#	Article	IF	CITATIONS
37	Oxidation of Terpenoids with a Cyclohexanone Fragment by Performic Acid. Chemistry of Natural Compounds, 2014, 50, 774-775.	0.8	6
38	Ozonolytic Transformation of (S)-(–)-Limonene in HCl–Isopropanol. Chemistry of Natural Compounds, 2015, 51, 71-73.	0.8	6
39	Transformations by Tosylhydrazide of Peroxide Ozonolysis Products of â^†3-Carene, (–)-α-Pinene, and (S)-Limonene. Chemistry of Natural Compounds, 2017, 53, 891-894.	0.8	6
40	Transformations of Peroxide Products from Ozonolysis of (–)-α-Pinene and (+)-3-Carene by Capric and Benzoic Acid Hydrazides. Chemistry of Natural Compounds, 2020, 56, 259-263.	0.8	6
41	Novel synthesis of (4R)-4-methylpentanolide from (L)-(â^')-menthol. Chemistry of Natural Compounds, 2004, 40, 548-551.	0.8	5
42	Natural cyclic α, β-enone monoterpenoids in nucleophilic addition reactions. Chemistry of Natural Compounds, 2006, 42, 367-388.	0.8	5
43	Two approaches to the synthesis of 9-oxo-and 10-hydroxy-2E-decenoic acids, important components of queen substance and royal jelly of honeybees Apis mellifera. Chemistry of Natural Compounds, 2008, 44, 74-76.	0.8	5
44	Synthesis of macrolides with N-containing (azine or hydrazide) groups. Chemistry of Natural Compounds, 2009, 45, 465-469.	0.8	5
45	Transformations of peroxide products of olefin ozonolysis under the action of semicarbazide in methanol. Russian Journal of Organic Chemistry, 2012, 48, 1272-1276.	0.8	5
46	Reactions of (R)-4-Menthen-3-one with Aluminum and Boron-Containing Hydrides. Chemistry of Natural Compounds, 2013, 48, 978-980.	0.8	5
47	Synthesis of optically active macrolides with hydrazide fragments from tetrahydropyran and L-(+)-tartaric acid derivatives. Chemistry of Natural Compounds, 2013, 49, 691-693.	0.8	5
48	Synthesis of ethyl 3,7,11-trimethyl-2,4-dodecadienoate (hydroprene) from 4-methyltetrahydropyran. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 1989, 38, 1768-1770.	0.0	4
49	Synthesis ofS-(+)-methoprene. Russian Chemical Bulletin, 1993, 42, 98-99.	1.5	4
50	Synthesis of the Honey-Bee Attractant 13-Hydroxy-2-oxotridecane. Chemistry of Natural Compounds, 2001, 37, 190-192.	0.8	4
51	Ozonolysis of ortho-alkenylanilines. Russian Chemical Bulletin, 2003, 52, 989-992.	1.5	4
52	Synthesis of Optically Pure 3R-methylcyclopentan-1-one from L-(-)-menthol. Chemistry of Natural Compounds, 2005, 41, 549-551.	0.8	4
53	Ozonolysis of Ricinolic Acid Derivatives and Transformations of the Ozonolysis Products under Barton Reaction Conditions. Chemistry of Natural Compounds, 2005, 41, 643-649.	0.8	4
54	L-(-)-Menthol in the Synthesis of Key Synthons for Optically Active Methyl-Branched Insect Pheromones. Chemistry of Natural Compounds, 2005, 41, 719-721.	0.8	4

#	Article	IF	CITATIONS
55	Transformations of peroxide ozonolysis products of (R)-Menth-4-en-3-one in the presence of nitrogen-containing organic compounds. Russian Journal of Organic Chemistry, 2013, 49, 42-45.	0.8	4
56	Wittig Olefination of Menthone Lactol and Its Aluminate. Chemistry of Natural Compounds, 2013, 48, 981-984.	0.8	4
57	Natural Seven-Membered Terpene Lactones: Synthesis and Biological Activity. Chemistry of Natural Compounds, 2015, 51, 1011-1034.	0.8	4
58	Effective Synthesis of 3β-Hydroxy-18βH-Olean-9(11),12 (13)-Dien-30-Oic Acid. Chemistry of Natural Compounds, 2016, 52, 959-960.	0.8	4
59	Stereoselective Synthesis of the Antileukemic Sesquiterpene (+)-Caparratriene from L-menthol and Tiglic Aldehyde. Chemistry of Natural Compounds, 2018, 54, 461-463.	0.8	4
60	Synthesis and Properties of Methyl 3,4-Epoxy-3,11-dioxo-3,4seco-18β-olean-12-ene-30-carboxylate in a New Reaction of Organoaluminium Compounds. Russian Journal of Organic Chemistry, 2020, 56, 251-254.	0.8	4
61	Synthesis of Enantiomerically Pure Macroheterocycle Containing Ester and Hydrazide Groups from Ricinoleic Acid. Macroheterocycles, 2013, 6, 180-183.	0.5	4
62	Insect pheromones and their analogs. XIII. Synthesis of dodec-8E-enyl and dodec-8Z-enyl acetates ? Components of the sex pheromones ofGrapholitha funebrana andGrapholitha molesta. Chemistry of Natural Compounds, 1985, 21, 372-374.	0.8	3
63	Use of enyne compounds in the synthesis of insect pheromones. Chemistry of Natural Compounds, 1997, 33, 25-30.	0.8	3
64	Enantiospecific synthesis of (S)-(+)-3-methylheneicosan-2-one, an analog of the sex pheromone of the German cockroach (Blatella germanica L.) from (â^')-(1R,4S)-menthone. Russian Chemical Bulletin, 1997, 46, 1033-1035.	1.5	3
65	Synthesis of derivatives of (S)-2-alkanols, components of pheromones ofDrosophila mulleri andRhyzopertha dominica, from (S)-(+)-3,7-dimethylocta-1,6-diene. Russian Chemical Bulletin, 2000, 49, 1899-1901.	1.5	3
66	A useful chiral synthon from (R)-4-menthenone. Russian Chemical Bulletin, 2001, 50, 1117-1117.	1.5	3
67	Synthesis and Pharmacological Properties of 9-Oxo-2E-decenoic Acid. Pharmaceutical Chemistry Journal, 2003, 37, 309-313.	0.8	3
68	Insect Pheromones Synthesized by Oxidative Transformations of Natural Monoterpenoids. Chemistry of Natural Compounds, 2005, 41, 617-635.	0.8	3
69	(R)-4-menthenone in reactions of 1,4-conjugate and 1,3-dipolar addition. Russian Journal of Organic Chemistry, 2008, 44, 652-656.	0.8	3
70	Hydroboration-oxidation of ricinoleic acid derivatives. Russian Journal of Organic Chemistry, 2008, 44, 1130-1133.	0.8	3
71	(R)-4-menthen-3-one in the synthesis of (3S)-methylundecand (2S)-methyldec-1-ylbromides, key synthons for (S,S,S)-diprionylacetate. Chemistry of Natural Compounds, 2010, 46, 370-372.	0.8	3
72	Ozonolytic Transformations of 10-Undecenoic Acid in Various Solvents Through the Action of Hydroxylamine and Semicarbazide Hydrochlorides. Chemistry of Natural Compounds, 2014, 50, 594-597.	0.8	3

#	Article	IF	CITATIONS
73	New method of preparation of alkoxyacetic acids. Doklady Chemistry, 2015, 462, 127-129.	0.9	3
74	Reduction at low temperature of isomentholactone with diisobutylaluminum hydride in CH2Cl2. Russian Journal of Organic Chemistry, 2015, 51, 1180-1182.	0.8	3
75	Low-Temperature Reduction by Diisobutylaluminum Hydride in CH2Cl2 of Seven-Membered Lactones from Betulin and S-(+)-Camphor. Chemistry of Natural Compounds, 2015, 51, 716-720.	0.8	3
76	Low-temperature reduction of acyclic (–)-mentholactone derivatives with diisobutylaluminum hydride in methylene chloride. Russian Journal of Organic Chemistry, 2015, 51, 947-950.	0.8	3
77	One-Pot Ozonolytic Synthesis of Isoniazid Derivatives from (–)-α-Pinene and Δ3-Carene. Russian Journal of Organic Chemistry, 2018, 54, 146-148.	0.8	3
78	Low-Temperature Ozonolysis of 2-Alkenyl-1,1-dichlorocyclopropanes. Russian Journal of Organic Chemistry, 2018, 54, 377-381.	0.8	3
79	Insect pheromones and their analogues. XXII. Methyl-branched pheromones based on 4-methyltetrahydropyran. Synthesis of racemic 2-acetoxy-3,7-dimethylpentadecane (diprionyl acetate). Chemistry of Natural Compounds, 1989, 25, 492-494.	0.8	2
80	Insect pheromones and their analogues XXIV. Synthesis of long-chain 1,5-dimethyl-branched pheromones from geranyl acetate. Chemistry of Natural Compounds, 1990, 26, 697-701.	0.8	2
81	Insect pheromones and their analogues. Chemistry of Natural Compounds, 1991, 27, 500-502.	0.8	2
82	Insect phermones and their analogues XXXVIII. Synthesis of (±)-3-methylheneicosan-2-one and (±)-2-acetoxy-3,7-dimethylpentadecane using the reductive β-vinylation of α-olefins. Chemistry of Natural Compounds, 1992, 28, 496-499.	0.8	2
83	Synthesis of (S)-6-methylhept-5-en-2-ol, the aggregation pheromone ofGnathotrichus sulcatus. Russian Chemical Bulletin, 2000, 49, 717-721.	1.5	2
84	Synthesis of racemic 8-nonene-2,4-diol, acyclic precursor of 1,3-dimethyl-1,9-dioxabicyclo[3.1.1]nonane. Russian Journal of Electrochemistry, 2000, 36, 771-773.	0.9	2
85	Title is missing!. Russian Chemical Bulletin, 2003, 52, 740-744.	1.5	2
86	(R)-4-Menthen-3-one anti-Oxime and Its Transformation under Beckman Rearrangement Conditions. Chemistry of Natural Compounds, 2003, 39, 569-572.	0.8	2
87	New approach to the synthesis of(R)-3-methyl-?-butyrolactone. Chemistry of Natural Compounds, 2004, 40, 482-483.	0.8	2
88	Synthesis of 3S-methylundec-1-ylbromide, a key synthon in the synthesis of (S,S,S)-diprionylacetate, from L-(-)-menthol. Chemistry of Natural Compounds, 2006, 42, 92-95.	0.8	2
89	Ozonolytic transformations of olefinic derivatives of L-menthol and ricinolic acid. Chemistry of Natural Compounds, 2006, 42, 631-635.	0.8	2
90	Electronic effects of conjugated enones on their reactivity in transformations of ADDN type. Journal of Structural Chemistry, 2007, 48, 46-50.	1.0	2

#	Article	IF	CITATIONS
91	Comparative ozonolysis of cyclic α,β-unsaturated enones. Russian Journal of Organic Chemistry, 2008, 44, 141-142.	0.8	2
92	Unusual behavior of methylidentriphenylphosphorane in reactions with seven-membered lactols. Russian Journal of Organic Chemistry, 2011, 47, 1142-1145.	0.8	2
93	New approach to the synthesis of 9-oxo-2E-decenoic acid, a multifunctional pheromone of queen honeybee, from the telomer of butadiene and water. Chemistry of Natural Compounds, 2011, 47, 789-791.	0.8	2
94	Synthesis from l-menthol of optically active macroheterocycles containing ester, azine, or hydrazide groups. Chemistry of Natural Compounds, 2011, 47, 206-209.	0.8	2
95	Low-temperature hydride reduction of (3R)-carvomentholactone. Chemistry of Natural Compounds, 2012, 47, 896-898.	0.8	2
96	Transformation of peroxide products of (S)-(-)-limonene ozonolysis in the system HCl-methanol. Russian Journal of Organic Chemistry, 2014, 50, 1746-1748.	0.8	2
97	Unexpected acidic transformation of allylic menthene sulfoxides into saturated sulfones. Mendeleev Communications, 2016, 26, 81-82.	1.6	2
98	New Synthesis of Known Herbicides Based on Aryloxyalkanoic Acids. Russian Journal of Organic Chemistry, 2018, 54, 1313-1318.	0.8	2
99	Macrolactonization of 12R-Hydroxyoctadec-9Z-Enoic Acid. Chemistry of Natural Compounds, 2018, 54, 1149-1151.	0.8	2
100	Synthesis of Optically Active Macrolides from L-menthol. Chemistry of Natural Compounds, 2018, 54, 889-892.	0.8	2
101	Synthesis of Optically Active Macrolides From L-Menthone Derivatives and Hydrazides of Adipic and 2,6-Pyridinedicarboxylic Acids. Chemistry of Natural Compounds, 2018, 54, 496-498.	0.8	2
102	Ozonolytic Transformations of (S)-(–)-Limonene and Abietic Acid in the Presence of Pyridine. Chemistry of Natural Compounds, 2019, 55, 474-477.	0.8	2
103	Transformations of Peroxide Ozonolysis Products of (–)-α-Pinene and (+)-3-Carene by the Action of 4-Hydroxybenzohydrazide. Russian Journal of Organic Chemistry, 2020, 56, 1673-1676.	0.8	2
104	Methods for Macrolactonization of Seco Acids in the Synthesis of Natural and Biologically Active Compounds. Russian Journal of Organic Chemistry, 2021, 57, 679-729.	0.8	2
105	Synthesis of Macroheterocycles with Ester and Hydrazide Fragments on the Basis of Tetrahydropyran. Macroheterocycles, 2011, 4, 50-57.	0.5	2
106	Synthesis of Optically Pure Macroheterocycle with Ester and Hydrazide Fragments on the Basis of l-Menthol. Macroheterocycles, 2012, 5, 246-248.	0.5	2
107	First Synthesis of Betulin 20-Acylhydrazones. Russian Journal of Organic Chemistry, 2022, 58, 76-80.	0.8	2
108	Insect pheromones and their analogs. VIII. Synthesis of the (Z) and (E) isomers of 2-methyloctadec-7-ene and of 2-methyl-7,8-epoxyoctadecane. Chemistry of Natural Compounds, 1983, 19, 593-597.	0.8	1

#	Article	IF	CITATIONS
109	A new route for the synthesis of 10-hydroxydec-2E-enoic and dec-2E-enedioic acids. Chemistry of Natural Compounds, 1983, 19, 658-660.	0.8	1
110	Insect pheromones and their analogs. XV. The synthesis of 9-oxodec-2E-enoic acid — A pheromone of the honeybeeApis melliferana. Chemistry of Natural Compounds, 1986, 22, 595-597.	0.8	1
111	Insect pheromones and their analogues. XVI. Practical synthesis of hexadec-9Z-enal ? A component of the sex pheromone of the cotton bollwormHeliothis armigera. Chemistry of Natural Compounds, 1987, 23, 242-244.	0.8	1
112	Insect pheromones and their analogs. Chemistry of Natural Compounds, 1987, 23, 365-368.	0.8	1
113	Insect pheromones and their analogs. XXIV. Methyl-branched pheromones derived from 4-methyltetrahydropyran. Synthesis of racemic 14-methyloctadec-1-ene ? The pheromone ofLyonetia clerckella. Chemistry of Natural Compounds, 1990, 26, 86-87.	0.8	1
114	Pheromones of insects and their analogs. XXIX. Methyl-branched pheromones from 4-methyltetrahydropyran 4: Synthesis of (�)-15,19,23-trimethylheptatriacontane ? A pheromone of Glossina morsitans morsitans. Chemistry of Natural Compounds, 1991, 27, 361-363.	0.8	1
115	Insect pheromones and their analogues. Chemistry of Natural Compounds, 1992, 28, 98-102.	0.8	1
116	Insect pheromones and their analogues. Chemistry of Natural Compounds, 1992, 28, 235-236.	0.8	1
117	Insect pheromones and their analogues. Chemistry of Natural Compounds, 1992, 28, 237-240.	0.8	1
118	Insect pheromones and their analogs. XLVII. Synthesis of 11-oxododeca-3,6-diynoic acid ? The acyclic precursor of a macrolide component of pheromones of Oryzaephilus mercator and O. Surinamensis. Chemistry of Natural Compounds, 1993, 29, 240-244.	0.8	1
119	Insect pheromones and their analogues XLVIII. A convenient synthesis of the 10E,12Z- and 10E,12E- isomers of hexadecadien-1-ol and of hexadeca-10E,12Z-dienal — Components of the sex pheromone of the silkworm moth. Chemistry of Natural Compounds, 1993, 29, 668-673.	0.8	1
120	Synthesis ofS-(+)-hydroprene. Russian Chemical Bulletin, 1993, 42, 100-101.	1.5	1
121	Stereospecific synthesis of 11E-tetradecenal, 11E-tetradecen-1-ol, and its acetate, pheromone components of insects ofLepidoptera order, from 10-undecenoic acid. Russian Chemical Bulletin, 1997, 46, 1035-1037.	1.5	1
122	A convergent synthesis of octadeca-2E, 13Z-dienyl acetate, a pheromone component ofSynanthedon tipuliformis C Russian Chemical Bulletin, 1997, 46, 1465-1467.	1.5	1
123	A versatile approach to the synthesis of 9(Z)-unsaturated acyclic insect pheromones from undec-10-enoic acid. Russian Chemical Bulletin, 1998, 47, 1595-1597.	1.5	1
124	Synthesis from 10-undecenoic acid of octadeca-2E,13Z-dienylacetate, a component of the sex pheromones ofSynanthedon tipuliformis andZenzera pyrina. Chemistry of Natural Compounds, 2000, 36, 207-209.	0.8	1
125	Title is missing!. Chemistry of Natural Compounds, 2001, 37, 486-489.	0.8	1
126	Synthesis of the Juvenoid (S)-(+)-Hydroprene from L-(-)-Menthol. Chemistry of Natural Compounds, 2001, 37, 140-142.	0.8	1

#	Article	IF	CITATIONS
127	Ozonolysis of N-acetyl-2-(cyclopent-2-enyl)aniline. Mendeleev Communications, 2001, 11, 146-147.	1.6	1
128	Synthesis of (3S,6RS)- and (3RS,6RS)-Analogs of Component Al of the Aonidiella aurantii Sex Pheromone by Stepwise Alkylation of Acetoacetic Ester. Chemistry of Natural Compounds, 2005, 41, 715-718.	0.8	1
129	Separation of a mixture of R-menth-4-en-3-one and (â^')-menthone. Chemistry of Natural Compounds, 2006, 42, 362-363.	0.8	1
130	Synthesis from L-menthol of optically active macrolides with N-containing (azine or hydrazide) groups. Chemistry of Natural Compounds, 2009, 45, 470-473.	0.8	1
131	Prilezhaev dihydroxylation of (R)-octadec-9Z-en-7-0l. Chemistry of Natural Compounds, 2009, 45, 637-640.	0.8	1
132	Synthesis of symmetric macrocyclic diesterdihyrazides using successive [2+1]- and [1+1]-condensations. Chemistry of Natural Compounds, 2010, 46, 10-14.	0.8	1
133	Synthesis from (+)-α-pinene of optically active macrocycles containing cyclobutane, ester, azine, or hydrazide groups. Chemistry of Natural Compounds, 2011, 47, 210-214.	0.8	1
134	Modified synthesis of methyl (1R,2R,3E,5R)-3-(hydroxyimino)-5-methyl-2-(1-methylethyl)-cyclohexanecarboxylate from (R)-4-menthen-3-one. Chemistry of Natural Compounds, 2012, 48, 789-790.	0.8	1
135	Hydroboration-oxidation of ricinoleic acid ester derivatives. Russian Journal of Organic Chemistry, 2012, 48, 1509-1511.	0.8	1
136	Synthesis of enantiomerically pure macrolides with hydrazide fragments from tetrahydropyran and l-(+)-tartaric acid derivatives. Russian Chemical Bulletin, 2013, 62, 217-219.	1.5	1
137	Thiylation of (R)-4-Menthen-3-one and Its Derivatives. Chemistry of Natural Compounds, 2013, 49, 864-871.	0.8	1
138	Synthetic Approaches to Optically Active Macrolides Containing Hydrazide Fragments of L-(+)-Tartaric Acid from (+)-3-Carene, (+)-1±-Pinene, and S-(–)-Limonene. Chemistry of Natural Compounds, 2014, 50, 658-660.	0.8	1
139	Transformations of peroxide ozonolysis products of (1R,3R)-p-menth-4-en-3-ol in the presence of pyridine. Russian Journal of Organic Chemistry, 2014, 50, 133-136.	0.8	1
140	Transformations of peroxide products of oleic acid ozonolysis at treatment with hydroxylamine and semicarbazide hydrochlorides. Russian Journal of Organic Chemistry, 2015, 51, 610-614.	0.8	1
141	One-pot ozonolytic synthesis of acyclic α,ï‰-bifunctional compounds from methyl 10-undecenoate and 10-undecen-1-ol. Russian Journal of Applied Chemistry, 2015, 88, 935-940.	0.5	1
142	Transformations of peroxide ozonolysis products of terminal olefins treated with tosylhydrazide. Russian Journal of Organic Chemistry, 2016, 52, 1708-1710.	0.8	1
143	Stereospecific synthesis of cis-verbenol. Russian Journal of Organic Chemistry, 2016, 52, 755-756.	0.8	1
144	One-Step Synthesis from Castor Oil of Enantiomeric Macrolides. Chemistry of Natural Compounds, 2017, 53, 620-622.	0.8	1

Article	IF	CITATIONS
One-Pot Synthesis of Phenylhydrazones from Alkenes. Russian Journal of Organic Chemistry, 2018, 54, 51-54.	0.8	1
Hydroxylamine Reactions with Peroxide Products of Alkenes Ozonolysis. Russian Journal of Organic Chemistry, 2018, 54, 1122-1126.	0.8	1
Macrocyclic Lactonization of 3R,7-Dimethyl-6S-Hydroxyoctanoic Acid. Chemistry of Natural Compounds, 2018, 54, 684-687.	0.8	1
Modified Ozonolytic Synthesis of 4Z-Nonen-1-ol, an Intermediate for the Synthesis of Sex Pheromones of Cotton Bollworm and Cabbage Moth, from the Cyclic Butadiene-Isoprene Codimer. Russian Journal of Applied Chemistry, 2019, 92, 244-247.	0.5	1
Hydrazides of Organic Acids in the Transformations of the Peroxide Products of Non-1-ene Ozonolysis. Russian Journal of Organic Chemistry, 2019, 55, 1712-1715.	0.8	1
Influence of Some Factors on the Progress of a New Reaction in the Chemistry of Organoaluminum Compounds. Russian Journal of Organic Chemistry, 2020, 56, 1353-1358.	0.8	1
Synthesis of Isonicotinic and Salicylic Acids Derivatives from (–)-α-Pinene and (+)-Δ3-Carene. Russian Journal of General Chemistry, 2020, 90, 2038-2042.	0.8	1
Synthesis from Δ3-Carene of Optically Active Macrolides with Fragments of Di- and Triethyleneglycol and Hydrazides of Dicarboxylic Acids. Chemistry of Natural Compounds, 2020, 56, 487-491.	0.8	1
Hydroboration–Oxidation of Terpenoids in Targeted Syntheses of Low-Molecular-Mass Bioregulators. Chemistry of Natural Compounds, 2020, 56, 1-26.	0.8	1
Synthesis of α,ï‰-Diketodiesters from Betulin. Chemistry of Natural Compounds, 2021, 57, 706-711.	0.8	1
Synthesis of Macrolides with Hydrazide Fragments from Tetrahydropyran and 2,6-Pyridinedicarboxylic Acid. Macroheterocycles, 2014, 7, 321-324.	0.5	1
Synthesis of Macroheterocycles Containing Pyridine-2,6-dicarboxylic and Adipic Acid Ester and Hydrazide Fragments Starting from Tetrahydropyran. Russian Journal of Organic Chemistry, 2020, 56, 2236-2239.	0.8	1
New Ozonolytic Synthesis of Keto Acids from 1-Alkylcycloalkenes. Russian Journal of Organic Chemistry, 2022, 58, 163-166.	0.8	1
	One-Pot Synthesis of Phenylhydrazones from Alkenes. Russian Journal of Organic Chemistry, 2018, 54, 1154. Hydroxylamine Reactions with Peroxide Products of Alkenes Ozonolysis. Russian Journal of Organic Chemistry, 2018, 54, 1122-1126. Macrocyclic Lactonization of 3R,7-Dimethyl-6S-Hydroxyoctanoic Acid. Chemistry of Natural Compounds, 2018, 54, 684-687. Modified Ozonolytic Synthesis of 4Z-Nonen-1-ol, an Intermediate for the Synthesis of Sex Pheromones of Cotton Bollworm and Cabbage Moth, from the Cyclic Butadiene-Isoprene Codimer. Russian Journal of Applied Chemistry, 2019, 92, 244-247. Hydrazides of Organic Acids in the Transformations of the Peroxide Products of Non-1-ene Ozonolysis. Russian Journal of Organic Chemistry, 2019, 55, 1712-1715. Influence of Some Factors on the Progress of a New Reaction in the Chemistry of Organoaluminum Compounds. Russian Journal of Organic Chemistry, 2020, 56, 1353-1358. Synthesis of Isontoctinic and Salkoylic Acids Derivatives from (3€")-1±-Pinene and (+)-1 ^m 3-Carene. Russian Journal of General Chemistry, 2020, 90, 2038-2042. Synthesis form I ^m 3-Carene of Optically Active Macrolides with Fragments of Di- and Triethyleneglycol and Hydrazides of Dicarboxylic Acids. Chemistry of Natural Compounds, 2020, 56, 487-491. Hydroboration&C'Oxidation of Terpenolds in Targeted Syntheses of Low-Molecular-Mass Bioregulators. Chemistry of Natural Compounds, 2021, 57, 706-711. Synthesis of Macrolides with Hydrazide Fragments from Tetrahydropyran and 2,6-Pyridinedicarboxylic Acid. Macroheterocycles, 2014, 7, 321-324. Synthesis of Macrolides with Hydrazide Fragments from Tetrahydropyran and 2,6-Pyridinedicarboxylic Acid. Macrohete	One-Pot Synthesis of Phenylhydrazones from Alkenes. Russian Journal of Organic Chemistry, 2018, 54, 1154.0.8Hydroxylamine Reactions with Peroxide Products of Alkenes Ozonolysis. Russian Journal of Organic Chemistry, 2018, 54, 1122-1126.0.8Macrocyclic Lactonization of 3R,7-Dimethyl-65-Hydroxyoctanolc Acid. Chemistry of Natural Compounds, 2018, 54, 684-687.0.8Modified Ozonolytic Synthesis of 42-Nonen-1-ol, an Intermediate for the Synthesis of Sex Pheromones of Cotton Bollworm and Cabbage Moth, from the Cyclic Butadiene-Isoprene Codimer. Russian Journal of Applied Chemistry, 2019, 92, 244-247.0.8Hydrazides of Organic Acids in the Transformations of the Peroxide Products of Non-1-ene Ozonolysis. Russian Journal of Organic Chemistry, 2019, 55, 1712-1715.0.8Influence of Some Factors on the Progress of a New Reaction in the Chemistry of Organoaluminum Compounds. Russian Journal of Organic Chemistry, 2020, 56, 1353-1358.0.8Synthesis from I ⁿ 3-Carene of Optically Active Macrolides with Fragments of Di- and Triethyleneglycol and Hydrazides of Dicarboxylic Acids. Chemistry of Natural Compounds, 2020, 56, 487-491.0.8Hydroborationá@"Oxidation of Terpenoids in Targeted Syntheses of Low-Molecular-Mass Bioregulators. Chemistry of Natural Compounds, 2021, 57, 706-711.0.8Synthesis of Macrolides with Hydrazide Fragments from Tetrahydropyran and 2,6-Pyridinedicarboxylic Acid. Macrolides with Hydrazide Fragments from Tetrahydropyran and 2,6-Pyridinedicarboxylic Acid. Macrolides with Hydrazide Fragments from Tetrahydropyran. Russian Journal Of Organic Chemistry, 2020, 56, 2236-2239.0.8

158

#	Article	IF	CITATIONS
163	Insect pheromones and their analogues. X. The stereodirected synthesis of (E,E)-dodeca-8,10-dienol. Chemistry of Natural Compounds, 1984, 20, 486-489.	0.8	0
164	Insect pheromones and their analogues. IX. Stereospecific synthesis of (Z)-dodeca-9,11-dienyl acetate, a component of the sex pheromone of the cotton bollworm mothDiparopsis cactanea. Chemistry of Natural Compounds, 1984, 20, 354-357.	0.8	0
165	Insect pheromones and their analogs. XII. Synthesis of the isomeric dec-5-enyl acetates ? The sex pheromones ofAnarsia lineatella andAgrotis segetum. Chemistry of Natural Compounds, 1985, 21, 369-371.	0.8	0
166	Insect pheromones and their analogs. XIV. Synthesis of muscalure ? The sex pheromone ofMusca domestica. Chemistry of Natural Compounds, 1985, 21, 375-377.	0.8	0
167	Insect pheromones and their analogues XXV. Synthesis of acetylenic precursors of pheromones from undecylenic acid. Chemistry of Natural Compounds, 1990, 26, 702-704.	0.8	0
168	Pheromones of insects and their analogs. XXVII. Synthesis of 10-hydroxy-4,8-dimethyldeca-4E,8E-dienoic acid and of racemic 4,8-dimethyldecanal from geranyl acetate. Chemistry of Natural Compounds, 1991, 27, 234-237.	0.8	0
169	Pheromones of insects and their analogs. Chemistry of Natural Compounds, 1991, 27, 621-623.	0.8	0
170	Insect pheromones and their analogues XLIII. Chiral pheromones from (S)-(+)-3,7-dimethylocta-1,6-diene 3. Synthesis of (4R)-4-methylnonan-1-OL — Sex pheromone of Tenebrio molitor and its racemic analogue. Chemistry of Natural Compounds, 1992, 28, 618-621.	0.8	0
171	Insect pheromones and their analogues XLIV. Chiral pheromones based on (S)-(+)-3,7-dimethylocta-1,6-diene 4. Synthesis of (S)-14-methyloctadec-1-ene — Sex pheromone of Lyonetia clerkella. Chemistry of Natural Compounds, 1992, 28, 621-623.	0.8	0
172	Insect pheromones and their analogues XLII. Synthesis of 2,6-dimethyloct-1-yl formate — A mimic of the aggregation pheromone of flour beetles. Chemistry of Natural Compounds, 1992, 28, 499-500.	0.8	0
173	Insect pheromones and their analogues. XLV. Synthesis of mono-and dienic components of insect pheromones from isopropyl nona-3E,8-dienoate. Chemistry of Natural Compounds, 1993, 29, 123-127.	0.8	0
174	Insect pheromones and their analogues. XLVI. Synthesis of 13RS-hydrooxytetradec-5Z-enoic acid ? The acyclic precursor of the macrolide component of the pheromone of Cryptolestes pusillus. Chemistry of Natural Compounds, 1993, 29, 128-131.	0.8	0
175	Synthesis of macrolide pheromones. Chemistry of Natural Compounds, 1996, 31, 435-454.	0.8	0
176	Insect pheromones and their analogs. LX. Stereocontrolled synthesis of sex pheromones ofDrosophila mulleri andMayetiola destructor. Chemistry of Natural Compounds, 2000, 36, 210-212.	0.8	0
177	Synthesis of 9-Oxo- and 10-Hydroxy-2E-decenoic Acids. ChemInform, 2003, 34, no.	0.0	0
178	Ozonolysis of ortho-Alkenylanilines ChemInform, 2003, 34, no.	0.0	0
179	Synthesis of the racemic analog of a honeybee (Apis mellifera) breeding pheromone component. Chemistry of Natural Compounds, 2004, 40, 593-594.	0.8	0
180	(R)-n-menth-4-en-3-one and its Derivatives in Reactions with N-containing Reagents. Chemistry of Natural Compounds, 2014, 50, 272-275.	0.8	0

#	Article	IF	CITATIONS
181	Reactions of bicyclo[2.2.1]heptane-2-endo,3-endo-dicarbohydrazide and its 5-endo,6-endo- and 5-endo,6-exo-dihydroxy derivatives with 7-oxooctyl 7-oxooctanoate and bis(7-oxooctyl) hexanedioate. Russian Journal of Organic Chemistry, 2015, 51, 831-835.	0.8	0
182	Transformations of (–)-α-Pinene Peroxide Ozonolysis Products by Hydrazines of HCl and H2SO4. Chemistry of Natural Compounds, 2016, 52, 1020-1022.	0.8	0
183	[1 + 1]-Condensation of 12-Oxo-Derivatives of Ricinoleic Acid Esters with Hydrazine Hydrate on the Route to Macrocycles. Chemistry of Natural Compounds, 2017, 53, 231-233.	0.8	0
184	Synthesis of optically active macrolides bearing di- and triethylene glycol and dicarboxylic acid hydrazide moieties from (-)-α-pinene. Russian Chemical Bulletin, 2019, 68, 1445-1450.	1.5	0
185	Synthesis from Undecylenic Acid of Macroheterocycles with Diacylhydrazine and Ester Fragments. Chemistry of Natural Compounds, 2019, 55, 895-898.	0.8	0
186	Undec-10-enoic Acid in the Synthesis of Macroheterocycles Containing Hydrazide and Ester Fragments. Russian Journal of Organic Chemistry, 2019, 55, 514-517.	0.8	0
187	Transformations of Peroxide Products of Non-1-ene Ozonolysis by the Action of Carboxylic Acid Hydrazides. Russian Journal of Organic Chemistry, 2021, 57, 113-116.	0.8	0
188	Single-Pot Ozonolytic Synthesis of Acylhydrazones from 1,1-Dichloro-2-ethenyl-2-methylcyclopropane. Russian Journal of General Chemistry, 2021, 91, 743-746.	0.8	0
189	10.1007/s11178-008-1019-6. , 2010, 44, 141.		0
190	Interaction of 7-oxoоctyl-7-oxooctanoate and bis(7-oxooctyl)hexandioate with phthalic dihydrazide. Macroheterocycles, 2014, 7, 391-393.	0.5	0
191	TiCl4 – an Effective Catalyst for Transformation of Betulin Into A-Neo-3-Isopropyl-19β,28-Epoxy-18α-Olean-9(10)-Ene. Chemistry of Natural Compounds, 2021, 57, 1167-1168.	0.8	0
192	Ozonolytic transformations of (<i>R</i>)â€(â^) arvon in the presence of pyridine. Journal of the Chinese Chemical Society, 0, , .	1.4	0
193	Synthesis of [2+1] Conjugates of Betulic Acid with α,ï‰-Diols. Russian Journal of Organic Chemistry, 2021, 57, 1861-1867.	0.8	0
194	Insect phermones and their analogues XXXIX. Synthesis of 11RS-hydroxy- and 12-hydroxydodec-3Z-enoic acids — Acyclic precursors of the macrolide components of the pheromones of Cryptolestes ferrugineus and C. pusillus. Chemistry of Natural Compounds, 1992, 28, 365-369.	0.8	0