Kazufumi Takano

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6007802/publications.pdf

Version: 2024-02-01

240 papers 5,977 citations

38 h-index 63 g-index

241 all docs

241 docs citations

times ranked

241

5417 citing authors

#	Article	IF	CITATIONS
1	Isolation of a Novel Cutinase Homolog with Polyethylene Terephthalate-Degrading Activity from Leaf-Branch Compost by Using a Metagenomic Approach. Applied and Environmental Microbiology, 2012, 78, 1556-1562.	3.1	391
2	Contribution of hydrogen bonds to protein stability. Protein Science, 2014, 23, 652-661.	7.6	323
3	Amyloid protofilament formation of hen egg lysozyme in highly concentrated ethanol solution. Protein Science, 2000, 9, 369-375.	7.6	190
4	Structure of HIV-1 protease in complex with potent inhibitor KNI-272 determined by high-resolution X-ray and neutron crystallography. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 4641-4646.	7.1	131
5	Laser Irradiated Growth of Protein Crystal. Japanese Journal of Applied Physics, 2003, 42, L798-L800.	1.5	124
6	Contribution of Hydrophobic Residues to the Stability of Human Lysozyme: Calorimetric Studies and X-ray Structural Analysis of the Five Isoleucine to Valine Mutants. Journal of Molecular Biology, 1995, 254, 62-76.	4.2	123
7	Biofilm formation by a Bacillus subtilis strain that produces \hat{I}^3 -polyglutamate. Microbiology (United) Tj ETQq $1\ 1\ 0$.784314 r 1.8	gBT/Overlock
8	Contribution of Salt Bridges near the Surface of a Protein to the Conformational Stability,. Biochemistry, 2000, 39, 12375-12381.	2.5	106
9	Contribution of the Hydrophobic Effect to the Stability of Human Lysozyme:  Calorimetric Studies and X-ray Structural Analyses of the Nine Valine to Alanine Mutants,. Biochemistry, 1997, 36, 688-698.	2.5	103
10	Contribution of water molecules in the interior of a protein to the conformational stability. Journal of Molecular Biology, 1997, 274, 132-142.	4.2	98
11	Conformational plasticity of RNA for target recognition as revealed by the 2.15 à crystal structure of a human IgG–aptamer complex. Nucleic Acids Research, 2010, 38, 7822-7829.	14.5	98
12	The Structure, Stability, and Folding Process of Amyloidogenic Mutant Human Lysozyme. Journal of Biochemistry, 1996, 120, 1216-1223.	1.7	79
13	Contribution of Intra- and Intermolecular Hydrogen Bonds to the Conformational Stability of Human Lysozymeâ€,â€į. Biochemistry, 1999, 38, 12698-12708.	2.5	72
14	Crystal structure of a family I.3 lipase from <i>Pseudomonas</i> sp. MIS38 in a closed conformation. FEBS Letters, 2007, 581, 5060-5064.	2.8	71
15	Buried water molecules contribute to the conformational stability of a protein. Protein Engineering, Design and Selection, 2003, 16, 5-9.	2.1	69
16	Contribution of Hydrogen Bonds to the Conformational Stability of Human Lysozyme:  Calorimetry and X-ray Analysis of Six Ser → Ala Mutants,. Biochemistry, 1999, 38, 6623-6629.	2.5	62
17	Crystal Structure of Unautoprocessed Precursor of Subtilisin from a Hyperthermophilic Archaeon. Journal of Biological Chemistry, 2007, 282, 8246-8255.	3.4	62
18	A general rule for the relationship between hydrophobic effect and conformational stability of a protein: stability and structure of a series of hydrophobic mutants of human lysozyme. Journal of Molecular Biology, 1998, 280, 749-761.	4.2	61

#	Article	IF	CITATIONS
19	Contribution of Hydrogen Bonds to the Conformational Stability of Human Lysozyme:  Calorimetry and X-ray Analysis of Six Tyrosine → Phenylalanine Mutants,. Biochemistry, 1998, 37, 9355-9362.	2.5	59
20	The Contribution of Polar Group Burial to Protein Stability Is Strongly Context-dependent. Journal of Biological Chemistry, 2003, 278, 31790-31795.	3.4	57
21	Possible involvement of an FKBP family member protein from a psychrotrophic bacterium Shewanella sp. SIB1 in cold-adaptation. FEBS Journal, 2004, 271, 1372-1381.	0.2	56
22	Four New Crystal Structures of Tk-subtilisin in Unautoprocessed, Autoprocessed and Mature Forms: Insight into Structural Changes during Maturation. Journal of Molecular Biology, 2007, 372, 1055-1069.	4.2	54
23	Laser ablation for protein crystal nucleation and seeding. Chemical Society Reviews, 2014, 43, 2147-2158.	38.1	54
24	Growth of Protein Crystals in Hydrogels Prevents Osmotic Shock. Journal of the American Chemical Society, 2012, 134, 5786-5789.	13.7	53
25	Osmolyte effect on the stability and folding of a hyperthermophilic protein. Proteins: Structure, Function and Bioinformatics, 2008, 71, 110-118.	2.6	51
26	Femtosecond laser-induced nucleation of protein in agarose gel. Journal of Crystal Growth, 2009, 311, 956-959.	1.5	51
27	Role of Amino Acid Residues at Turns in the Conformational Stability and Folding of Human Lysozymeâ€,‡. Biochemistry, 2000, 39, 8655-8665.	2.5	50
28	Are the parameters of various stabilization factors estimated from mutant human lysozymes compatible with other proteins? Protein Engineering, Design and Selection, 2001, 14, 127-134.	2.1	48
29	Contribution of Polar Groups in the Interior of a Protein to the Conformational Stabilityâ€,‡. Biochemistry, 2001, 40, 4853-4858.	2.5	45
30	Phylogenetic analysis of condensation domains in the nonribosomal peptide synthetases. FEMS Microbiology Letters, 2005, 252, 143-151.	1.8	45
31	Structure of amyloid beta fragments in aqueous environments. FEBS Journal, 2006, 273, 150-158.	4.7	45
32	Ca2+-Dependent Maturation of Subtilisin from a Hyperthermophilic Archaeon, Thermococcus kodakaraensis: the Propeptide Is a Potent Inhibitor of the Mature Domain but Is Not Required for Its Folding. Applied and Environmental Microbiology, 2006, 72, 4154-4162.	3.1	45
33	Enhancement of femtosecond laser-induced nucleation of protein in a gel solution. Applied Physics Letters, 2010, 96, .	3.3	45
34	Crystal Structure and Structure-based Mutational Analyses of RNase HIII from Bacillus stearothermophilus: A New Type 2 RNase H with TBP-like Substrate-binding Domain at the N Terminus. Journal of Molecular Biology, 2006, 356, 165-178.	4.2	44
35	Contribution of amino acid substitutions at two different interior positions to the conformational stability of human lysozyme. Protein Engineering, Design and Selection, 1999, 12, 841-850.	2.1	42
36	Urea denatured state ensembles contain extensive secondary structure that is increased in hydrophobic proteins. Protein Science, 2010, 19, 929-943.	7.6	41

#	Article	IF	CITATIONS
37	Structure and stability of a thermostable carboxylesterase from the thermoacidophilic archaeon ⟨i>Sulfolobusâ€∫tokodaii⟨/i>. FEBS Journal, 2012, 279, 3071-3084.	4.7	41
38	Effect of foreign N-terminal residues on the conformational stability of human lysozyme. FEBS Journal, 1999, 266, 675-682.	0.2	40
39	Promotion of protein crystal growth by actively switching crystal growth mode via femtosecond laser ablation. Nature Photonics, 2016, 10, 723-726.	31.4	40
40	Protein crystal growth with a two-liquid system and stirring solution. Journal of Synchrotron Radiation, 2004, 11, 121-124.	2.4	39
41	Role of Surface Hydrophobic Residues in the Conformational Stability of Human Lysozyme at Three Different Positions,. Biochemistry, 2000, 39, 14448-14456.	2.5	38
42	Behavior of Bovine Serum Albumin Molecules in Molecular Crowding Environments Investigated by Raman Spectroscopy. Langmuir, 2016, 32, 7372-7382.	3.5	38
43	Hydrophobic Effect on the Stability and Folding of a Hyperthermophilic Protein. Journal of Molecular Biology, 2008, 378, 264-272.	4.2	37
44	Experimental verification of the `stability profile of mutant protein' (SPMP) data using mutant human lysozymes. Protein Engineering, Design and Selection, 1999, 12, 663-672.	2.1	36
45	Membrane Protein Crystallization Using Laser Irradiation. Japanese Journal of Applied Physics, 2004, 43, L1376-L1378.	1.5	36
46	Effect of extra N-terminal residues on the stability and folding of human lysozyme expressed in Pichia pastoris. Protein Engineering, Design and Selection, 2000, 13, 299-307.	2.1	35
47	Application of a two-liquid system to sitting-drop vapour-diffusion protein crystallization. Acta Crystallographica Section D: Biological Crystallography, 2003, 59, 194-196.	2.5	35
48	A Hyperthermophilic Protein Acquires Function at the Cost of Stabilityâ€. Biochemistry, 2006, 45, 12673-12679.	2.5	35
49	Effect of ultrasonic irradiation on protein crystallization. Journal of Crystal Growth, 2006, 292, 437-440.	1.5	35
50	Crystal Structure of a Subtilisin Homologue, Tk-SP, from Thermococcus kodakaraensis: Requirement of a C-terminal \hat{l}^2 -Jelly Roll Domain for Hyperstability. Journal of Molecular Biology, 2010, 400, 865-877.	4.2	35
51	The stability and folding process of amyloidogenic mutant human lysozymes. FEBS Journal, 2001, 268, 155-159.	0.2	34
52	Identification of Single Mn2+ Binding Sites Required for Activation of the Mutant Proteins of E.coli RNase HI at Glu48 and/or Asp134 by X-ray Crystallography. Journal of Molecular Biology, 2005, 345, 1171-1183.	4.2	34
53	Flavobacterium compostarboris sp. nov., isolated from leaf-and-branch compost, and emended descriptions of Flavobacterium hercynium, Flavobacterium resistens and Flavobacterium johnsoniae. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 2018-2024.	1.7	34
54	Effect of the diseaseâ€eausing mutations identified in human ribonuclease (RNase) H2 on the activities and stabilities of yeast RNase H2 and archaeal RNase HII. FEBS Journal, 2008, 275, 4836-4849.	4.7	32

#	Article	IF	CITATIONS
55	FK506-Binding Protein 22 from a Psychrophilic Bacterium, a Cold Shock-Inducible Peptidyl Prolyl Isomerase with the Ability to Assist in Protein Folding. International Journal of Molecular Sciences, 2011, 12, 5261-5284.	4.1	32
56	Promotion of Large Protein Crystal Growth with Stirring Solution. Japanese Journal of Applied Physics, 2002, 41, L1025-L1027.	1.5	31
57	Selective crystallization of metastable phase of acetaminophen by ultrasonic irradiation. Applied Physics Express, 2015, 8, 065501.	2.4	31
58	Application of a Stirring Method to Micro-Scale and Vapor Diffusion Protein Crystallization. Japanese Journal of Applied Physics, 2003, 42, L314-L315.	1.5	30
59	Requirement of Left-Handed Glycine Residue for High Stability of the Tk-Subtilisin Propeptide as Revealed by Mutational and Crystallographic Analyses. Journal of Molecular Biology, 2007, 374, 1359-1373.	4.2	30
60	Requirement of a Unique Ca2+-Binding Loop for Folding of Tk-Subtilisin from a Hyperthermophilic Archaeon. Biochemistry, 2009, 48, 10637-10643.	2.5	30
61	Kinetically Robust Monomeric Protein from a Hyperthermophileâ€. Biochemistry, 2004, 43, 13859-13866.	2.5	29
62	Stabilities and activities of the N- and C-domains of FKBP22 from a psychrotrophic bacterium overproduced in Escherichia coli. FEBS Journal, 2005, 272, 632-642.	4.7	29
63	Extracellular secretion of Escherichia coli alkaline phosphatase with a C-terminal tag by type I secretion system: purification and biochemical characterization. Protein Engineering, Design and Selection, 2006, 19, 337-343.	2.1	29
64	Crystal structure of Tkâ€subtilisin folded without propeptide: Requirement of propeptide for acceleration of folding. FEBS Letters, 2008, 582, 3875-3878.	2.8	29
65	Isolation and characterization of Rhodococcus sp. strains TMP2 and T12 that degrade 2,6,10,14-tetramethylpentadecane (pristane) at moderately low temperatures. Journal of Biotechnology, 2005, 115, 129-136.	3.8	28
66	X-ray Crystallographic and MD Simulation Studies on the Mechanism of Interfacial Activation of a Family I.3 Lipase with Two Lids. Journal of Molecular Biology, 2010, 400, 82-95.	4.2	28
67	Importance of a repetitive nine-residue sequence motif for intracellular stability and functional structure of a family I.3 lipase. FEBS Letters, 2005, 579, 4707-4712.	2.8	26
68	Proline Effect on the Thermostability and Slow Unfolding of a Hyperthermophilic Protein. Journal of Biochemistry, 2008, 145, 79-85.	1.7	26
69	Evolution and thermodynamics of the slow unfolding of hyperstable monomeric proteins. BMC Evolutionary Biology, 2010, 10, 207.	3.2	26
70	Laser-induced nucleation in protein crystallization: Local increase in protein concentration induced by femtosecond laser irradiation. Journal of Crystal Growth, 2011, 318, 741-744.	1.5	26
71	Selective crystallization of the metastable phase of indomethacin at the interface of liquid/air bubble induced by femtosecond laser irradiation. Applied Physics Express, 2015, 8, 045501.	2.4	26
72	Stress Responses of Shade-Treated Tea Leaves to High Light Exposure after Removal of Shading. Plants, 2020, 9, 302.	3.5	26

#	Article	IF	CITATIONS
73	Engineering of monomeric FK506â€binding protein 22 with peptidyl prolyl <i>cisâ€ŧrans</i> isomerase. FEBS Journal, 2009, 276, 4091-4101.	4.7	25
74	Promotion of Crystal Nucleation of Protein by Semi-Solid Agarose Gel. Applied Physics Express, 2009, 2, 125501.	2.4	25
75	Evolvability of Thermophilic Proteins from Archaea and Bacteria. Biochemistry, 2013, 52, 4774-4780.	2.5	25
76	Laser energy dependence on femtosecond laser-induced nucleation of protein. Applied Physics A: Materials Science and Processing, 2008, 93, 911-915.	2.3	24
77	Femtosecond laser processing of protein crystals grown in agarose gel. Journal of Crystal Growth, 2009, 312, 73-78.	1.5	24
78	Identification of the Interactions Critical for Propeptide-Catalyzed Folding of Tk-Subtilisin. Journal of Molecular Biology, 2009, 394, 306-319.	4.2	24
79	Protein Crystal Processing Using a Deep-UV Laser. Japanese Journal of Applied Physics, 2004, 43, L73-L75.	1.5	23
80	Crystal Structure of Type 1 Ribonuclease H from Hyperthermophilic Archaeon Sulfolobus tokodaii:  Role of Arginine 118 and C-Terminal Anchoring,. Biochemistry, 2007, 46, 11494-11503.	2.5	23
81	Effects of a Forced Solution Flow on the Step Advancement on {110} Faces of Tetragonal Lysozyme Crystals: Direct Visualization of Individual Steps under a Forced Solution Flow. Crystal Growth and Design, 2012, 12, 2856-2863.	3.0	23
82	Role of amino acid residues in left-handed helical conformation for the conformational stability of a protein. Proteins: Structure, Function and Bioinformatics, 2001, 45, 274-280.	2.6	22
83	Purification, crystallization and preliminary X-ray diffraction of SecDF, a translocon-associated membrane protein, fromThermus thermophilus. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 376-380.	0.7	22
84	Gentisate 1,2-Dioxygenase fromXanthobacter polyaromaticivorans127W. Bioscience, Biotechnology and Biochemistry, 2007, 71, 192-199.	1.3	22
85	Protein Crystallization in Agarose Gel with High Strength: Developing an Automated System for Protein Crystallographic Processes. Japanese Journal of Applied Physics, 2009, 48, 075502.	1.5	22
86	Revisiting the Rate-Limiting Step of the ANS–Protein Binding at the Protein Surface and Inside the Hydrophobic Cavity. Molecules, 2021, 26, 420.	3.8	22
87	Positive Contribution of Hydration Structure on the Surface of Human Lysozyme to the Conformational Stability. Journal of Biological Chemistry, 2002, 277, 21792-21800.	3.4	21
88	Improving the Quality of Protein Crystals Using Stirring Crystallization. Japanese Journal of Applied Physics, 2004, 43, L522-L525.	1.5	21
89	Gene Cloning, Overproduction, and Characterization of Thermolabile Alkaline Phosphatase from a Psychrotrophic Bacterium. Bioscience, Biotechnology and Biochemistry, 2005, 69, 364-373.	1.3	21
90	Conformational contagion in a protein: Structural properties of a chameleon sequence. Proteins: Structure, Function and Bioinformatics, 2007, 68, 617-625.	2.6	21

#	Article	IF	Citations
91	Effect of Stirring Method on Protein Crystallization. Japanese Journal of Applied Physics, 2004, 43, L1318-L1319.	1.5	20
92	Universal Processing Technique for Protein Crystals Using Pulsed UV Laser. Japanese Journal of Applied Physics, 2004, 43, L873-L876.	1.5	19
93	Solution stirring initiates nucleation and improves the quality of adenosine deaminase crystals. Acta Crystallographica Section D: Biological Crystallography, 2005, 61, 759-762.	2.5	19
94	Crystal structure of a human kynurenine aminotransferase II homologue from Pyrococcus horikoshii OT3 at 2.20 Ã resolution. Proteins: Structure, Function and Bioinformatics, 2005, 61, 685-688.	2.6	19
95	Crystallization and preliminary X-ray analysis of the tRNA thiolation enzyme MnmA fromEscherichia colicomplexed with tRNAGlu. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 368-371.	0.7	19
96	Requirement of Ca2+lons for the Hyperthermostability of Tk-Subtilisin fromThermococcus kodakarensis. Biochemistry, 2012, 51, 5369-5378.	2.5	19
97	Role of non-glycine residues in left-handed helical conformation for the conformational stability of human lysozyme. Proteins: Structure, Function and Bioinformatics, 2001, 44, 233-243.	2.6	18
98	New Practical Technique for Protein Crystallization with Floating and Stirring Methods. Japanese Journal of Applied Physics, 2003, 42, L1161-L1163.	1.5	18
99	Molecular resolution investigation of tetragonal lysozyme (110) face in liquid by frequency-modulation atomic force microscopy. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2010, 28, C4C11-C4C14.	1.2	18
100	Flavobacterium banpakuense sp. nov., isolated from leaf-and-branch compost. International Journal of Systematic and Evolutionary Microbiology, 2011, 61, 1595-1600.	1.7	18
101	Activity-stability trade-off in random mutant proteins. Journal of Bioscience and Bioengineering, 2019, 128, 405-409.	2.2	18
102	Crystallization and preliminary neutron diffraction studies of HIV-1 protease cocrystallized with inhibitor KNI-272. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1003-1006.	0.7	17
103	Inhibition of chymotrypsin- and subtilisin-like serine proteases with Tk-serpin from hyperthermophilic archaeon Thermococcus kodakaraensis. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2011, 1814, 299-307.	2.3	17
104	Slow Unfolding of Monomeric Proteins from Hyperthermophiles with Reversible Unfolding. International Journal of Molecular Sciences, 2009, 10, 1369-1385.	4.1	16
105	Influence of energy and wavelength on femtosecond laser-induced nucleation of protein. Chemical Physics Letters, 2011, 510, 139-142.	2.6	16
106	Spatially Precise, Soft Microseeding of Single Protein Crystals by Femtosecond Laser Ablation. Crystal Growth and Design, 2012, 12, 4334-4339.	3.0	16
107	A Novel Approach for Protein Crystallization by a Synthetic Hydrogel with Thermoreversible Gelation Polymer. Crystal Growth and Design, 2013, 13, 1899-1904.	3.0	16
108	The direction of protein evolution is destined by the stability. Biochimie, 2018, 150, 100-109.	2.6	16

#	Article	IF	Citations
109	Gene Cloning and Biochemical Characterizations of Thermostable Ribonuclease HIII fromBacillus stearothermophilus. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2138-2147.	1.3	15
110	Effects of Solution Stirring on Protein Crystal Growth. Japanese Journal of Applied Physics, 2004, 43, L686-L688.	1.5	15
111	Cleavage of Various Peptides with Pitrilysin fromEscherichia coli: Kinetic Analyses Using β-Endorphin and Its Derivatives. Bioscience, Biotechnology and Biochemistry, 2004, 68, 2128-2137.	1.3	15
112	New Technique of Manipulating a Protein Crystal Using Adhesive Material. Applied Physics Express, 0, 1, 037002.	2.4	15
113	Growth of Large Protein Crystals by Top-Seeded Solution Growth Together with the Floating and Solution-Stirring Technique. Crystal Growth and Design, 2009, 9, 5227-5232.	3.0	15
114	Stabilization by Fusion to the C-terminus of Hyperthermophile Sulfolobus tokodaii RNase HI: A Possibility of Protein Stabilization Tag. PLoS ONE, 2011, 6, e16226.	2.5	15
115	Approach for growth of high-quality and large protein crystals. Journal of Synchrotron Radiation, 2011, 18, 16-19.	2.4	15
116	Enzymatic activity of a subtilisin homolog, Tk-SP, from Thermococcus kodakarensisin detergents and its ability to degrade the abnormal prion protein. BMC Biotechnology, 2013, 13, 19.	3.3	15
117	Crystallization of aspirin form II by femtosecond laser irradiation. Applied Physics Express, 2019, 12, 015507.	2.4	15
118	Protein Cryocrystallography Using Laser-Processed Crystal. Japanese Journal of Applied Physics, 2005, 44, L54-L56.	1.5	14
119	Structural, Thermodynamic, and Mutational Analyses of a Psychrotrophic RNase HI,. Biochemistry, 2007, 46, 7460-7468.	2.5	14
120	Crystal structure of highly thermostable glycerol kinase from a hyperthermophilic archaeon in a dimeric form. FEBS Journal, 2008, 275, 2632-2643.	4.7	14
121	High-resolution structure of exo-arabinanase from <i>Penicillium chrysogenum</i> Crystallographica Section D: Biological Crystallography, 2011, 67, 415-422.	2.5	14
122	Proteolysis of abnormal prion protein with a thermostable protease from Thermococcus kodakarensis KOD1. Applied Microbiology and Biotechnology, 2014, 98, 2113-2120.	3.6	14
123	Metastable crystal growth of acetaminophen using solution-mediated phase transformation. Applied Physics Express, 2017, 10, 015501.	2.4	14
124	Protein Evolution is Potentially Governed by Protein Stability: Directed Evolution of an Esterase from the Hyperthermophilic Archaeon Sulfolobus tokodaii. Journal of Molecular Evolution, 2018, 86, 283-292.	1.8	14
125	Crystal structure of Nâ€domain of FKBP22 from <i>Shewanella</i> sp. SIB1: Dimer dissociation by disruption of Valâ€Leu knot. Protein Science, 2011, 20, 1755-1764.	7.6	13
126	Effect of Gelâ€"Solution Interface on Femtosecond Laser-Induced Nucleation of Protein. Crystal Growth and Design, 2013, 13, 1491-1496.	3.0	13

#	Article	IF	CITATIONS
127	Pre-Stirring Promotes Nucleation of Protein Crystals. Japanese Journal of Applied Physics, 2004, 43, L243-L246.	1.5	12
128	Processing of membrane protein crystal using ultraviolet laser irradiation. Journal of Bioscience and Bioengineering, 2005, 100, 50-53.	2.2	12
129	Structural and thermodynamic analyses of <i>Escherichia coli</i> RNaseâ€fHI variant with quintuple thermostabilizing mutations. FEBS Journal, 2007, 274, 5815-5825.	4.7	12
130	Effect of solution flow produced by rotary shaker on protein crystallization. Journal of Crystal Growth, 2008, 310, 2168-2172.	1.5	12
131	Femtosecond Laser Processing of Agarose Gel Surrounding Protein Crystals for Development of an Automated Crystal Capturing System. Japanese Journal of Applied Physics, 2009, 48, 105502.	1.5	12
132	Spiral Growth Can Enhance Both the Normal Growth Rate and Quality of Tetragonal Lysozyme Crystals Grown under a Forced Solution Flow. Crystal Growth and Design, 2015, 15, 2137-2143.	3.0	12
133	Growth of high-quality metastable crystal of acetaminophen using solution-mediated phase transformation at low supersaturation. Journal of Crystal Growth, 2018, 502, 76-82.	1.5	12
134	New Approach to Improve X-Ray Diffraction Pattern of Protein Crystal Using UV-Laser Ablative Processing. Japanese Journal of Applied Physics, 2004, 43, L297-L299.	1.5	11
135	Solution-stirring method improves crystal quality of human triosephosphate isomerase. Journal of Bioscience and Bioengineering, 2006, 101, 83-86.	2.2	11
136	Gene cloning and in vivo characterization of a dibenzothiophene dioxygenase from Xanthobacter polyaromaticivorans. Applied Microbiology and Biotechnology, 2006, 69, 672-681.	3.6	11
137	Protein Thermostabilization Requires a Fine-tuned Placement of Surface-charged Residues. Journal of Biochemistry, 2007, 142, 507-516.	1.7	11
138	Crystal Growth Procedure of HIV-1 Protease-Inhibitor KNI-272 Complex for Neutron Structural Analysis at 1.9 Ã Resolution. Crystal Growth and Design, 2010, 10, 2990-2994.	3.0	11
139	Characteristic Features of Kynurenine Aminotransferase Allosterically Regulated by (Alpha)-Ketoglutarate in Cooperation with Kynurenine. PLoS ONE, 2012, 7, e40307.	2.5	11
140	Crystallization of acetaminophen form II by plastic-ball-assisted ultrasonic irradiation. Applied Physics Express, 2017, 10, 025501.	2.4	11
141	A Semiautomatic Protein Crystallization System with Preventing Evaporation of Drops and Surface Sensor of Solution. Japanese Journal of Applied Physics, 2004, 43, L76-L78.	1.5	10
142	Mutational and Structural-Based Analyses of the Osmolyte Effect on Protein Stability. Journal of Biochemistry, 2004, 135, 701-708.	1.7	10
143	Femtosecond Laser Processing of Protein Crystals in Crystallization Drop. Japanese Journal of Applied Physics, 2005, 44, L873-L875.	1.5	10
144	Protein Crystallization by Combining Laser Irradiation and Solution-Stirring Techniques. Japanese Journal of Applied Physics, 2005, 44, 1365-1366.	1.5	10

#	Article	IF	CITATIONS
145	Binding analysis of a psychrotrophic FKBP22 to a folding intermediate of protein using surface plasmon resonance. FEBS Letters, 2005, 579, 5781-5784.	2.8	10
146	The Nâ€terminal hybrid binding domain of RNase HI from <i>Thermotogaâ€∫maritima</i> is important for substrate binding and Mg ²⁺ â€dependent activity. FEBS Journal, 2010, 277, 4474-4489.	4.7	10
147	Cloning of the RNase H genes from a metagenomic DNA library: identification of a new type 1 RNase H without a typical active-site motif. Journal of Applied Microbiology, 2010, 109, 974-983.	3.1	10
148	Identification of the substrate binding site in the N-terminal TBP-like domain of RNase H3. FEBS Letters, 2011, 585, 2313-2317.	2.8	10
149	Activity, stability, and structure of metagenomeâ€derived LC11â€RNase H1, a homolog of <i>Sulfolobus tokodaii</i> RNase H1. Protein Science, 2012, 21, 553-561.	7.6	10
150	Investigating the Structural Dependence of Protein Stabilization by Amino Acid Substitution. Biochemistry, 2013, 52, 2839-2847.	2.5	10
151	Development of protein seed crystals reinforced with high-strength hydrogels. CrystEngComm, 2015, 17, 8064-8071.	2.6	10
152	Spectroscopic Analysis of Proteinâ€Crowded Environments Using the Chargeâ€Transfer Fluorescence Probe 8â€Anilinoâ€1â€Naphthalenesulfonic Acid. ChemPhysChem, 2019, 20, 1456-1466.	2.1	10
153	Effective Protein Crystallization Using Crystal Hysteresis. Japanese Journal of Applied Physics, 2003, 42, L384-L385.	1.5	9
154	Temperature-Screening System for Determining Protein Crystallization Conditions. Japanese Journal of Applied Physics, 2005, 44, 4080-4083.	1.5	9
155	Crystallization and preliminary crystallographic analysis of orotidine 5′-monophosphate decarboxylase from the human malaria parasitePlasmodium falciparum. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 542-545.	0.7	9
156	Crystallization and preliminary X-ray diffraction study of an active-site mutant of pro-Tk-subtilisin from a hyperthermophilic archaeon. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 902-905.	0.7	9
157	Identification of the gene encoding a type 1 RNase H with an Nâ€ŧerminal doubleâ€stranded RNA binding domain from a psychrotrophic bacterium. FEBS Journal, 2007, 274, 3715-3727.	4.7	9
158	Crystallization and preliminary X-ray diffraction studies of an RNA aptamer in complex with the human IgG Fc fragment. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 942-944.	0.7	9
159	Strategy for cold adaptation of the tryptophan synthase $\hat{l}\pm$ subunit from the psychrophile Shewanella frigidimarina K14-2: crystal structure and physicochemical properties. Journal of Biochemistry, 2014, 155, 73-82.	1.7	9
160	Molecular mechanism underlying promiscuous polyamine recognition by spermidine acetyltransferase. International Journal of Biochemistry and Cell Biology, 2016, 76, 87-97.	2.8	9
161	A crystallization technique for obtaining large protein crystals with increased mechanical stability using agarose gel combined with a stirring technique. Journal of Crystal Growth, 2016, 452, 172-178.	1.5	9
162	Structural Basis for the Serratia marcescens Lipase Secretion System: Crystal Structures of the Membrane Fusion Protein and Nucleotide-Binding Domain. Biochemistry, 2017, 56, 6281-6291.	2.5	9

#	Article	IF	Citations
163	Improvement of metastable crystal of acetaminophen via control of crystal growth rate. Applied Physics Express, 2018, 11, 035501.	2.4	9
164	Anaerobic glycerol-3-phosphate dehydrogenase complex from hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Journal of Bioscience and Bioengineering, 2019, 127, 679-685.	2.2	9
165	Elongation in a Â-Structure Promotes Amyloid-Like Fibril Formation of Human Lysozyme. Journal of Biochemistry, 2002, 132, 655-661.	1.7	8
166	Application of UV-Laser Ablation to Detaching Protein Crystal from Growth Vessel. Japanese Journal of Applied Physics, 2004, 43, L1271-L1274.	1.5	8
167	Identification of RNase HII from psychrotrophic bacterium, Shewanella sp. SIB1 as a high-activity type RNase H. FEBS Journal, 2006, 273, 2264-2275.	4.7	8
168	Femtosecond laser-induced cleaving of protein crystal in water solution. Applied Surface Science, 2007, 253, 6447-6450.	6.1	8
169	Protein Core Adaptability: Crystal Structures of the Cavity-Filling Variants of Escherichia coli RNase Hl. Protein and Peptide Letters, 2010, 17, 1163-1169.	0.9	8
170	Spectroscopic Signature of the Steric Strains in an <i>Escherichia coli</i> RNase HI Cavity-Filling Destabilized Mutant Protein. Journal of Physical Chemistry B, 2020, 124, 91-100.	2.6	8
171	Intergrowth of two aspirin polymorphism observed with Raman spectroscopy. Journal of Crystal Growth, 2020, 532, 125430.	1.5	8
172	Control of Protein Crystal Nucleation and Growth Using Stirring Solution. Japanese Journal of Applied Physics, 2004, 43, L1442-L1444.	1.5	7
173	Cooling-rate screening system for determining protein crystal growth conditions. Journal of Crystal Growth, 2006, 292, 433-436.	1.5	7
174	Remarkable Stabilization of a Psychrotrophic RNase HI by a Combination of Thermostabilizing Mutations Identified by the Suppressor Mutation Method. Biochemistry, 2008, 47, 8040-8047.	2.5	7
175	Evaluation and Improvement of a Technique to Manipulate Protein Crystals in Solution. Japanese Journal of Applied Physics, 2008, 47, 8995-8997.	1.5	7
176	Estimated effects of silicone glue on protein crystal growth. Journal of Crystal Growth, 2010, 312, 2771-2774.	1.5	7
177	Growth of Protein Crystals by Syringe-Type Top-Seeded Solution Growth. Crystal Growth and Design, 2011, 11, 1486-1492.	3.0	7
178	Slow Unfolding Pathway of Hyperthermophilic Tk-RNase H2 Examined by Pulse Proteolysis Using the Stable Protease Tk-Subtilisin. Biochemistry, 2012, 51, 9178-9191.	2.5	7
179	Requirement of insertion sequence IS1 for thermal adaptation of Pro-Tk-subtilisin from hyperthermophilic archaeon. Extremophiles, 2012, 16, 841-851.	2.3	7
180	Crystal structure of a <scp>GH1</scp> βâ€glucosidase from <i>Hamamotoa singularis</i> Protein Science, 2020, 29, 2000-2008.	7.6	7

#	Article	IF	CITATIONS
181	Novel and Simple Screening Methods for Protein Crystallization by Vapor Diffusion Rate Control. Japanese Journal of Applied Physics, 2004, 43, 6264-6267.	1.5	6
182	Generation of Protein Crystals Using a Solution-Stirring Technique. Japanese Journal of Applied Physics, 2004, 43, L762-L764.	1.5	6
183	Extracellular overproduction and preliminary crystallographic analysis of a family I.3 lipase. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 187-189.	0.7	6
184	A Manipulating Tool for Protein Microcrystals in Solution Using Adhesive Materials. Japanese Journal of Applied Physics, 2009, 48, 118001.	1.5	6
185	Destabilization of psychrotrophic RNase HI in a localized fashion as revealed by mutational and Xâ€ray crystallographic analyses. FEBS Journal, 2009, 276, 603-613.	4.7	6
186	Crystal structure of stable protein CutA1 from psychrotrophic bacteriumShewanellasp. SIB1. Journal of Synchrotron Radiation, 2011, 18, 6-10.	2.4	6
187	Large-scale crystallization of acetaminophen trihydrate by a novel stirring technique. Applied Physics Express, 2019, 12, 045503.	2.4	6
188	Effect of Evaporation on Protein Crystals Grown in Semi-Solid Agarose Hydrogel. Japanese Journal of Applied Physics, 2011, 50, 025502.	1.5	6
189	Two-Liquid Hanging-Drop Vapor-Diffusion Technique of Protein Crystallization. Japanese Journal of Applied Physics, 2004, 43, L79-L81.	1.5	5
190	Development of protein crystallization and processing: femtosecond laser, all solid-state $193\mathrm{nm}$ laser, and solution stirring techniques. , 2007 , , .		5
191	Heparanase Localization during Palatogenesis in Mice. BioMed Research International, 2013, 2013, 1-9.	1.9	5
192	Expression and characterization of functional domains of FK506-binding protein 35 from Plasmodium knowlesi. Protein Engineering, Design and Selection, 2018, 31, 489-498.	2.1	5
193	Highly active enzymes produced by directed evolution with stability-based selection. Enzyme and Microbial Technology, 2020, 140, 109626.	3.2	5
194	Protein Crystal Growth Using Laser-Processed Seed Crystals. Japanese Journal of Applied Physics, 2005, 44, 3177-3179.	1.5	4
195	Crystallization and preliminary crystallographic analysis of type 1 RNase H from the hyperthermophilic archaeonSulfolobus tokodaii7. Acta Crystallographica Section F: Structural Biology Communications, 2006, 62, 781-784.	0.7	4
196	Growth of large protein crystals by a large-scale hanging-drop method. Journal of Applied Crystallography, 2010, 43, 937-939.	4.5	4
197	An alternative mature form of subtilisin homologue, Tkâ€6P, from <i>Thermococcusâ€∫kodakaraensis</i> identified in the presence of Ca ²⁺ . FEBS Journal, 2011, 278, 1901-1911.	4.7	4
198	Effect of Evaporation on Protein Crystals Grown in Semi-Solid Agarose Hydrogel. Japanese Journal of Applied Physics, 2011, 50, 025502.	1.5	4

#	Article	lF	CITATIONS
199	Atomic-Scale Imaging of Surface and Hydration Structures of Stable and Metastable Acetaminophen Crystals by Frequency Modulation Atomic Force Microscopy. Journal of Physical Chemistry C, 2018, 122, 21983-21990.	3.1	4
200	Crystallization and preliminary X-ray diffraction study of thermostable RNase HIII fromBacillus stearothermophilus. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 293-295.	0.7	3
201	Overproduction and preliminary crystallographic study of a human kynurenine aminotransferase II homologue fromPyrococcus horikoshiiOT3. Acta Crystallographica Section F: Structural Biology Communications, 2005, 61, 319-322.	0.7	3
202	Amyloidogenecity and pitrilysin sensitivity of a lysine-free derivative of amyloid \hat{l}^2 -peptide cleaved from a recombinant fusion protein. Journal of Biotechnology, 2006, 122, 186-197.	3.8	3
203	Application of femtosecond laser ablation for detaching grown protein crystals from glass capillary tube. Journal of Bioscience and Bioengineering, 2006, 102, 372-374.	2.2	3
204	Crystallization and preliminary X-ray crystallographic analysis of Ca ²⁺ -free primary Ca ²⁺ -sensor of Na ⁺ /Ca ²⁺ exchanger. Acta Crystallographica Section F: Structural Biology Communications, 2008, 64, 1125-1127.	0.7	3
205	Crystallization and preliminary X-ray crystallographic analysis of a helicase-like domain from a tomato mosaic virus replication protein. Acta Crystallographica Section F: Structural Biology Communications, 2011, 67, 1649-1652.	0.7	3
206	A new practical technique for high quality protein crystallization with the solution stirring technique at the interface between high-concentrated hydrogel and solution. Japanese Journal of Applied Physics, 2014, 53, 065502.	1.5	3
207	Crystallization and preliminary crystallographic studies of PotA, a membrane-associated ATPase of the spermidine-preferential uptake system in (i) Thermotoga maritima (i). Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 738-741.	0.8	3
208	Preliminary X-ray analysis of the binding domain of the soybean vacuolar sorting receptor complexed with a sorting determinant of a seed storage protein. Acta Crystallographica Section F, Structural Biology Communications, 2015, 71, 132-135.	0.8	3
209	Protein crystallization with paper. Japanese Journal of Applied Physics, 2016, 55, 050302.	1.5	3
210	Microflow system promotes acetaminophen crystal nucleation. Engineering in Life Sciences, 2020, 20, 395-401.	3.6	3
211	Effects of entrapped gas on the surface of a plastic ball induced by ultrasonic irradiation on the enhancement of crystallization of acetaminophen form II. Journal of Crystal Growth, 2021, 557, 125994.	1.5	3
212	Spectroscopic Evidence of the Salt-Induced Conformational Change around the Localized Electric Charges on the Protein Surface of Fibronectin Type III. Langmuir, 2020, 36, 14243-14254.	3.5	3
213	Effect of Laser Irradiation on Enzyme Activity. Japanese Journal of Applied Physics, 2005, 44, 8216-8218.	1.5	2
214	Crystallization and preliminary X-ray diffraction study of glycerol kinase from the hyperthermophilic archaeonThermococcus kodakaraensis. Acta Crystallographica Section F: Structural Biology Communications, 2007, 63, 126-129.	0.7	2
215	Expression, purification, crystallization and preliminary crystallographic analysis of spermidine acetyltransferase from (i>Escherichia coli (/i>. Acta Crystallographica Section F: Structural Biology Communications, 2013, 69, 884-887.	0.7	2
216	Growth of high-strength protein crystals with nanofibers. Applied Physics Express, 2016, 9, 035503.	2.4	2

#	Article	IF	Citations
217	Alkyne Tagged Raman Probes for Protein by Chemical Modification Approach. ChemistrySelect, 2017, 2, 1267-1270.	1.5	2
218	Hyperthermophilic Subtilisin-Like Proteases From Thermococcus kodakarensis., 2017,, 81-117.		2
219	Development of Polymorphic Control Technology for Pharmaceutical Compounds. , 2019, , 269-291.		2
220	Insertion loopâ€mediated folding propagation governs efficient maturation of hyperthermophilic Tkâ€subtilisin at high temperatures. FEBS Letters, 2021, 595, 452-461.	2.8	2
221	Semiautomatic Protein Crystallization System Featuring Crystallization Solution Preparation Function. Japanese Journal of Applied Physics, 2005, 44, 6302-6303.	1.5	1
222	A Stable Protein - CutA1., 2012,,.		1
223	Slow Unfolding Pathway of the Hyperthermophilic Tk-RNase H2 Examined by Pulse Proteolysis Using Mutant Proteins. Biochemistry and Analytical Biochemistry: Current Research, 2015, 04, .	0.4	1
224	Affinity shift of ATP upon glycerol binding to a glycerol kinase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1. Journal of Bioscience and Bioengineering, 2020, 129, 657-663.	2.2	1
225	Growth of Acetaminophen Polymorphic Crystals and Solution-Mediated Phase Transition from Trihydrate to Form II in Agarose Gel. Crystals, 2021, 11, 1069.	2.2	1
226	How to Evaluate the Contribution of Factors to the Conformational Stability of a Protein Seibutsu Butsuri, 1999, 39, 92-96.	0.1	1
227	<title>Novel approach to process protein crystals using deep-UV laser</title> ., 2004, , .		0
228	Drug Development Value Chain Constructed by Collaboration Between The SOSHO Project and The NPO BIOGRID. AIP Conference Proceedings, 2007, , .	0.4	0
229	2P-119 X-ray structure of RNA aptamer in complex with human immunoglobulin G(The 46th Annual) Tj ETQq1 1 C).784314 0.1	rgBT /Overlo
230	2P007 Crystal structure of the Escherichia coli spermidine acetyl-transferase in complex with spermidine and coenzyme A(The 48th Annual Meeting of the Biophysical Society of Japan). Seibutsu Butsuri, 2010, 50, 583.	0.1	0
231	2P066 1E1450 Conformational stability of large proteins(The 48th Annual Meeting of the Biophysical) Tj ETQq1 I	l 0.78431	4 rgBT /Ove
232	Exploring mutable conserved sites and fatal non-conserved sites by random mutation of esterase from Sulfolobus tokodaii and subtilisin from Thermococcus kodakarensis. International Journal of Biological Macromolecules, 2021, 170, 343-353.	7.5	0
233	Protein Crystal Processing Using Ultraviolet Laser. Nihon Kessho Gakkaishi, 2004, 46, 292-296.	0.0	0
234	Control of Protein Crystallization Using Laser Irradiation. Nihon Kessho Gakkaishi, 2004, 46, 238-242.	0.0	0

#	Article	IF	CITATIONS
235	Bio-Crystal Design. Seibutsu Butsuri, 2005, 45, 37-40.	0.1	0
236	The Trial of Drug Discovery using the In-Silico Screening Methods Developed by Pharmaceutical Innovation Value Chain. Nihon Kessho Gakkaishi, 2010, 52, 89-94.	0.0	0
237	Delineation of the Conformational Thermostability of Hyperthermophilic Proteins Based on Structural and Biophysical Analyses. , 2011, , 1-20.		0
238	Growth of Protein Crystals in Hydrogels with High Strength. Nihon Kessho Gakkaishi, 2012, 54, 300-303.	0.0	0
239	Folding and Unfolding Kinetics of Unpurified Proteins by Pulse Proteolysis. Protein and Peptide Letters, 2016, 23, 976-987.	0.9	0
240	Role of Conformational Stability in Molecular Evolution of Proteins. Seibutsu Butsuri, 2019, 59, 314-316.	0.1	0