Thomas D Kocher

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6007034/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Identification of sex chromosome and sex-determining gene of southern catfish (<i>Silurus) Tj ETQq1 1 0.78431 Biological Sciences, 2022, 289, 20212645.</i>	.4 rgBT /C 2.6	verlock 10 Tf 14
2	CRISPR Knockouts of <i>pmela</i> and <i>pmelb</i> Engineered a Golden Tilapia by Regulating Relative Pigment Cell Abundance. Journal of Heredity, 2022, 113, 398-413.	2.4	17
3	New Sex Chromosomes in Lake Victoria Cichlid Fishes (Cichlidae: Haplochromini). Genes, 2022, 13, 804.	2.4	5
4	Screening and characterization of sex-linked DNA markers in Mozambique tilapia (Oreochromis) Tj ETQq0 0 0 rg	3T /Overlc	ock 10 Tf 50 6
5	Polymorphism of Sex Determination Amongst Wild Populations Suggests its Rapid Turnover Within the Nile Tilapia Species. Frontiers in Genetics, 2022, 13, .	2.3	6
6	Network architecture and sex chromosome turnovers. BioEssays, 2021, 43, 2000161.	2.5	4
7	Origin of a Giant Sex Chromosome. Molecular Biology and Evolution, 2021, 38, 1554-1569.	8.9	24
8	Identification, Expression and Evolution of Short-Chain Dehydrogenases/Reductases in Nile Tilapia (Oreochromis niloticus). International Journal of Molecular Sciences, 2021, 22, 4201.	4.1	5
9	Nile Tilapia: A Model for Studying Teleost Color Patterns. Journal of Heredity, 2021, 112, 469-484.	2.4	30
10	Chromosomeâ€level assembly of southern catfish (<i>silurus meridionalis</i>) provides insights into visual adaptation to nocturnal and benthic lifestyles. Molecular Ecology Resources, 2021, 21, 1575-1592.	4.8	20
11	A Chromosome-Level Genome Assembly of Mozambique Tilapia (Oreochromis mossambicus) Reveals the Structure of Sex Determining Regions. Frontiers in Genetics, 2021, 12, 796211.	2.3	5
12	Homozygous mutation of foxh1 arrests oogenesis causing infertility in female Nile tilapiaâ€. Biology of Reproduction, 2020, 102, 758-769.	2.7	17
13	Movement of transposable elements contributes to cichlid diversity. Molecular Ecology, 2020, 29, 4956-4969.	3.9	18
14	Ecomorphological divergence and habitat lability in the context of robust patterns of modularity in the cichlid feeding apparatus. BMC Evolutionary Biology, 2020, 20, 95.	3.2	26
15	Structure and Sequence of the Sex Determining Locus in Two Wild Populations of Nile Tilapia. Genes, 2020, 11, 1017.	2.4	12

16	Chromosomeâ€level genome assembly of a cyprinid fish <i>Onychostoma macrolepis</i> by integration of nanopore sequencing, Bionano and Hi technology. Molecular Ecology Resources, 2020, 20, 1361-1371.	4.8	27
17	Loss of Cyp11c1 causes delayed spermatogenesis due to the absence of 11-ketotestosterone. Journal of Endocrinology, 2020, 244, 487-499.	2.6	31

Diurnal variation in opsin expression and common housekeeping genes necessitates comprehensive normalization methods for quantitative realâ€time PCR analyses. Molecular Ecology Resources, 2019, 19, 4.8 27 1447-1460.

THOMAS D KOCHER

#	Article	IF	CITATIONS
19	Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. GigaScience, 2019, 8, .	6.4	83
20	Changing sex for selfish gain: B chromosomes of Lake Malawi cichlid fish. Scientific Reports, 2019, 9, 20213.	3.3	34
21	Visual adaptation could aid sympatric speciation in a deep crater lake. Molecular Ecology, 2019, 28, 5007-5009.	3.9	1
22	Characterization of sex chromosomes in three deeply diverged species of Pseudocrenilabrinae (Teleostei: Cichlidae). Hydrobiologia, 2019, 832, 397-408.	2.0	16
23	Novel Sex Chromosomes in 3 Cichlid Fishes from Lake Tanganyika. Journal of Heredity, 2018, 109, 489-500.	2.4	30
24	Genomic Characterization of a B Chromosome in Lake Malawi Cichlid Fishes. Genes, 2018, 9, 610.	2.4	22
25	Unusual Diversity of Sex Chromosomes in African Cichlid Fishes. Genes, 2018, 9, 480.	2.4	92
26	Understanding Student Perceptions and Practices for Pre-Lecture Content Reading in the Genetics Classroom. Journal of Microbiology and Biology Education, 2018, 19, .	1.0	3
27	Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics, 2018, 19, 363.	2.8	68
28	Aquaculture genomics, genetics and breeding in the United States: current status, challenges, and priorities for future research. BMC Genomics, 2017, 18, 191.	2.8	155
29	An allelic series at <i>pax7a</i> is associated with colour polymorphism diversity in Lake Malawi cichlid fish. Molecular Ecology, 2017, 26, 2625-2639.	3.9	30
30	A high quality assembly of the Nile Tilapia (Oreochromis niloticus) genome reveals the structure of two sex determination regions. BMC Genomics, 2017, 18, 341.	2.8	179
31	Dynamic Sequence Evolution of a Sex-Associated B Chromosome in Lake Malawi Cichlid Fish. Journal of Heredity, 2017, 108, 53-62.	2.4	36
32	Integrated analysis of miRNA and mRNA expression profiles in tilapia gonads at an early stage of sex differentiation. BMC Genomics, 2016, 17, 328.	2.8	86
33	Comparative analysis of a sex chromosome from the blackchin tilapia, Sarotherodon melanotheron. BMC Genomics, 2016, 17, 808.	2.8	32
34	An improved genome reference for the African cichlid, Metriaclima zebra. BMC Genomics, 2015, 16, 724.	2.8	61
35	A Tandem Duplicate of Anti-MÃ1/4llerian Hormone with a Missense SNP on the Y Chromosome Is Essential for Male Sex Determination in Nile Tilapia, Oreochromis niloticus. PLoS Genetics, 2015, 11, e1005678.	3.5	315
36	Structure and decay of a proto-Y region in Tilapia, Oreochromis niloticus. BMC Genomics, 2014, 15, 975.	2.8	48

THOMAS D KOCHER

#	Article	IF	CITATIONS
37	Origin and Evolution of B Chromosomes in the Cichlid Fish Astatotilapia latifasciata Based on Integrated Genomic Analyses. Molecular Biology and Evolution, 2014, 31, 2061-2072.	8.9	112
38	The genomic substrate for adaptive radiation in African cichlid fish. Nature, 2014, 513, 375-381.	27.8	874
39	Mapping of pigmentation QTL on an anchored genome assembly of the cichlid fish, Metriaclima zebra. BMC Genomics, 2013, 14, 287.	2.8	40
40	Origins of Shared Genetic Variation in African Cichlids. Molecular Biology and Evolution, 2013, 30, 906-917.	8.9	86
41	A high-resolution map of the Nile tilapia genome: a resource for studying cichlids and other percomorphs. BMC Genomics, 2012, 13, 222.	2.8	104
42	Integrating cytogenetics and genomics in comparative evolutionary studies of cichlid fish. BMC Genomics, 2012, 13, 463.	2.8	30
43	A Small Number of Genes Underlie Male Pigmentation Traits in <scp>L</scp> ake <scp>M</scp> alawi Cichlid Fishes. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 2012, 318, 199-208.	1.3	23
44	Tol2-mediated transgenesis in tilapia (Oreochromis niloticus). Aquaculture, 2011, 319, 342-346.	3.5	32
45	Circular DNA Intermediate in the Duplication of Nile Tilapia vasa Genes. PLoS ONE, 2011, 6, e29477.	2.5	24
46	Genetic and Physical Mapping of Sex-Linked AFLP Markers in Nile Tilapia (Oreochromis niloticus). Marine Biotechnology, 2011, 13, 557-562.	2.4	63
47	Craniofacial divergence and ongoing adaptation via the hedgehog pathway. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 13194-13199.	7.1	109
48	Comparative physical maps derived from BAC end sequences of tilapia (Oreochromis niloticus). BMC Genomics, 2010, 11, 636.	2.8	25
49	Chromosome differentiation patterns during cichlid fish evolution. BMC Genetics, 2010, 11, 50.	2.7	74
50	MULTIPLE INTERACTING LOCI CONTROL SEX DETERMINATION IN LAKE MALAWI CICHLID FISH. Evolution; International Journal of Organic Evolution, 2010, 64, 486-501.	2.3	177
51	Sexual Conflict Resolved by Invasion of a Novel Sex Determiner in Lake Malawi Cichlid Fishes. Science, 2009, 326, 998-1001.	12.6	321
52	Sex-linked markers and microsatellite locus duplication in the cichlid species <i>Oreochromis tanganicae</i> . Biology Letters, 2008, 4, 700-703.	2.3	22
53	Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Cenome Biology, 2008, 9, R113.	9.6	101
54	<i>Amh</i> and <i>Dmrta2</i> Genes Map to Tilapia (<i>Oreochromis</i> spp.) Linkage Group 23 Within Quantitative Trait Locus Regions for Sex Determination. Genetics, 2006, 174, 1573-1581.	2.9	106

THOMAS D KOCHER

#	Article	IF	CITATIONS
55	A BAC-based physical map of the Nile tilapia genome. BMC Genomics, 2005, 6, 89.	2.8	72
56	Integration and evolution of the cichlid mandible: The molecular basis of alternate feeding strategies. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 16287-16292.	7.1	277
57	A Second-Generation Genetic Linkage Map of Tilapia (Oreochromis spp.)Sequence data from this article have been deposited with the EMBL/GenBank data libraries under accession nos. G68180, G68324 and BV005269, BV005594 Genetics, 2005, 170, 237-244.	2.9	243
58	Adaptive Molecular Evolution in the Opsin Genes of Rapidly Speciating Cichlid Species. Molecular Biology and Evolution, 2005, 22, 1412-1422.	8.9	138
59	Adaptive evolution and explosive speciation: the cichlid fish model. Nature Reviews Genetics, 2004, 5, 288-298.	16.3	888
60	Genome mapping of the orange blotch colour pattern in cichlid fishes. Molecular Ecology, 2003, 12, 2465-2471.	3.9	107
61	Directional selection has shaped the oral jaws of Lake Malawi cichlid fishes. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 5252-5257.	7.1	290
62	Genetic and ecological divergence of a monophyletic cichlid species pair under fully sympatric conditions in Lake Ejagham, Cameroon. Molecular Ecology, 2001, 10, 1471-1488.	3.9	197
63	Speciation in rapidly diverging systems: lessons from Lake Malawi. Molecular Ecology, 2001, 10, 1075-1086.	3.9	267
64	Assessing morphological differences in an adaptive trait: A landmark‐based morphometric approach. The Journal of Experimental Zoology, 2001, 289, 385-403.	1.4	76
65	Cone Opsin Genes of African Cichlid Fishes: Tuning Spectral Sensitivity by Differential Gene Expression. Molecular Biology and Evolution, 2001, 18, 1540-1550.	8.9	229
66	The genetic relationships of two subspecies of striped field mice, Apodemus agrarius coreae and Apodemus agrarius chejuensis. Heredity, 2000, 85, 30-36.	2.6	25
67	DIVERGENCE WITH GENE FLOW IN THE ROCK-DWELLING CICHLIDS OF LAKE MALAWI. Evolution; International Journal of Organic Evolution, 2000, 54, 1725-1737.	2.3	88
68	Population structure and colour variation of the cichlid fishes Labeotropheus fuelleborni Ahl along a recently formed archipelago of rocky habitat patches in southern Lake Malawi. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 119-130.	2.6	106
69	Biogeography and population genetics of the Lake Malawi cichlid Melanochromis auratus: habitat transience, philopatry and speciation. Molecular Ecology, 1999, 8, 1013-1026.	3.9	79
70	A Genetic Linkage Map of a Cichlid Fish, the Tilapia (Oreochromis niloticus). Genetics, 1998, 148, 1225-1232.	2.9	259
71	Evolution of NADH Dehydrogenase Subunit 2 in East African Cichlid Fish. Molecular Phylogenetics and Evolution, 1995, 4, 420-432.	2.7	214

72 African fishes. Nature, 1991, 350, 467-468.

27.8 25

#	Article	IF	CITATIONS
73	Evolution of the cytochromeb gene of mammals. Journal of Molecular Evolution, 1991, 32, 128-144.	1.8	2,029
74	Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature, 1990, 347, 550-553.	27.8	891

FURTHER GENETIC ANALYSES OF A HYBRID ZONE BETWEEN LEOPARD FROGS (<i>RANA PIPIENS</i>) Tj ETQq1 1 0.784314 rgBT /Ov