Jung-Mao Hsu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6006724/publications.pdf

Version: 2024-02-01

101543 197818 8,214 47 36 49 citations g-index h-index papers 50 50 50 11890 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	PARP Inhibitor Upregulates PD-L1 Expression and Enhances Cancer-Associated Immunosuppression. Clinical Cancer Research, 2017, 23, 3711-3720.	7. O	710
2	Glycosylation and stabilization of programmed death ligand-1 suppresses T-cell activity. Nature Communications, 2016, 7, 12632.	12.8	648
3	IKKÎ 2 Suppression of TSC1 Links Inflammation and Tumor Angiogenesis via the mTOR Pathway. Cell, 2007, 130, 440-455.	28.9	585
4	Deubiquitination and Stabilization of PD-L1 by CSN5. Cancer Cell, 2016, 30, 925-939.	16.8	538
5	PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nature Cell Biology, 2020, 22, 1264-1275.	10.3	508
6	Eradication of Triple-Negative Breast Cancer Cells by Targeting Glycosylated PD-L1. Cancer Cell, 2018, 33, 187-201.e10.	16.8	381
7	EZH2 Promotes Expansion of Breast Tumor Initiating Cells through Activation of RAF1-β-Catenin Signaling. Cancer Cell, 2011, 19, 86-100.	16.8	371
8	Degradation of Mcl-1 by \hat{l}^2 -TrCP Mediates Glycogen Synthase Kinase 3-Induced Tumor Suppression and Chemosensitization. Molecular and Cellular Biology, 2007, 27, 4006-4017.	2.3	348
9	Exosomal PD-L1 harbors active defense function to suppress T cell killing of breast cancer cells and promote tumor growth. Cell Research, 2018, 28, 862-864.	12.0	345
10	The Crosstalk of mTOR/S6K1 and Hedgehog Pathways. Cancer Cell, 2012, 21, 374-387.	16.8	322
11	STT3-dependent PD-L1 accumulation on cancer stem cells promotes immune evasion. Nature Communications, 2018, 9, 1908.	12.8	282
12	Galectin-9 interacts with PD-1 and TIM-3 to regulate T cell death and is a target for cancer immunotherapy. Nature Communications, 2021, 12, 832.	12.8	248
13	IL-6/JAK1 pathway drives PD-L1 Y112 phosphorylation to promote cancer immune evasion. Journal of Clinical Investigation, 2019, 129, 3324-3338.	8.2	209
14	Crosstalk between ArgÂ1175 methylation and TyrÂ1173 phosphorylation negatively modulates EGFR-mediated ERK activation. Nature Cell Biology, 2011, 13, 174-181.	10.3	192
15	Posttranslational Modifications of PD-L1 and Their Applications in Cancer Therapy. Cancer Research, 2018, 78, 6349-6353.	0.9	183
16	Myeloid Cell Leukemia-1 Inversely Correlates with Glycogen Synthase Kinase-3Î ² Activity and Associates with Poor Prognosis in Human Breast Cancer. Cancer Research, 2007, 67, 4564-4571.	0.9	171
17	Down-regulation of Myeloid Cell Leukemia-1 through Inhibiting Erk/Pin 1 Pathway by Sorafenib Facilitates Chemosensitization in Breast Cancer. Cancer Research, 2008, 68, 6109-6117.	0.9	167
18	Palmitoylation stabilizes PD-L1 to promote breast tumor growth. Cell Research, 2019, 29, 83-86.	12.0	158

#	Article	IF	Citations
19	Long non-coding RNAs: versatile master regulators of gene expression and crucial players in cancer. American Journal of Translational Research (discontinued), 2012, 4, 127-50.	0.0	141
20	TYRO3 induces anti–PD-1/PD-L1 therapy resistance by limiting innate immunity and tumoral ferroptosis. Journal of Clinical Investigation, 2021, 131, .	8.2	135
21	MET Inhibitors Promote Liver Tumor Evasion of the Immune Response by Stabilizing PDL1. Gastroenterology, 2019, 156, 1849-1861.e13.	1.3	131
22	Molecular mechanisms and functions of pyroptosis in inflammation and antitumor immunity. Molecular Cell, 2021, 81, 4579-4590.	9.7	127
23	PRMT1-mediated methylation of the EGF receptor regulates signaling and cetuximab response. Journal of Clinical Investigation, 2015, 125, 4529-4543.	8.2	114
24	Phosphorylation and Stabilization of HURP by Aurora-A: Implication of HURP as a Transforming Target of Aurora-A. Molecular and Cellular Biology, 2005, 25, 5789-5800.	2.3	109
25	The Translocon Sec $61\hat{l}^2$ Localized in the Inner Nuclear Membrane Transports Membrane-embedded EGF Receptor to the Nucleus. Journal of Biological Chemistry, 2010, 285, 38720-38729.	3.4	107
26	Fbx7 Functions in the SCF Complex Regulating Cdk1-Cyclin B-phosphorylated Hepatoma Up-regulated Protein (HURP) Proteolysis by a Proline-rich Region. Journal of Biological Chemistry, 2004, 279, 32592-32602.	3.4	94
27	Identification of V23RalA-Ser194 as a Critical Mediator for Aurora-A-induced Cellular Motility and Transformation by Small Pool Expression Screening. Journal of Biological Chemistry, 2005, 280, 9013-9022.	3.4	93
28	Targeting Glycosylated PD-1 Induces Potent Antitumor Immunity. Cancer Research, 2020, 80, 2298-2310.	0.9	87
29	IKKα Activation of NOTCH Links Tumorigenesis via FOXA2 Suppression. Molecular Cell, 2012, 45, 171-184.	9.7	83
30	Activated T cell-derived exosomal PD-1 attenuates PD-L1-induced immune dysfunction in triple-negative breast cancer. Oncogene, 2021, 40, 4992-5001.	5.9	68
31	AKT1 Inhibits Epithelial-to-Mesenchymal Transition in Breast Cancer through Phosphorylation-Dependent Twist1 Degradation. Cancer Research, 2016, 76, 1451-1462.	0.9	65
32	CDK2-mediated site-specific phosphorylation of EZH2 drives and maintains triple-negative breast cancer. Nature Communications, 2019, 10, 5114.	12.8	64
33	Bile Acid Exposure Up-regulates Tuberous Sclerosis Complex 1/Mammalian Target of Rapamycin Pathway in Barrett's-Associated Esophageal Adenocarcinoma. Cancer Research, 2008, 68, 2632-2640.	0.9	58
34	Oncogenic Functions of Gli1 in Pancreatic Adenocarcinoma Are Supported by Its PRMT1-Mediated Methylation. Cancer Research, 2016, 76, 7049-7058.	0.9	51
35	FOXO3a-Dependent Mechanism of E1A-Induced Chemosensitization. Cancer Research, 2011, 71, 6878-6887.	0.9	42
36	Inhibition of ATR downregulates PD-L1 and sensitizes tumor cells to T cell-mediated killing. American Journal of Cancer Research, 2018, 8, 1307-1316.	1.4	42

#	Article	IF	CITATIONS
37	Targeting conserved N-glycosylation blocks SARS-CoV-2 variant infection in vitro. EBioMedicine, 2021, 74, 103712.	6.1	37
38	Coiled Coil Region of Streptokinase \hat{I}^3 -Domain Is Essential for Plasminogen Activation. Journal of Biological Chemistry, 2001, 276, 15025-15033.	3.4	32
39	Targeting the IKK \hat{I}^2 /mTOR/VEGF Signaling Pathway as a Potential Therapeutic Strategy for Obesity-Related Breast Cancer. Molecular Cancer Therapeutics, 2012, 11, 2212-2221.	4.1	31
40	HER family kinase domain mutations promote tumor progression and can predict response to treatment in human breast cancer. Molecular Oncology, 2015, 9, 586-600.	4.6	31
41	Deglycosylation of PD-L1 by 2-deoxyglucose reverses PARP inhibitor-induced immunosuppression in triple-negative breast cancer. American Journal of Cancer Research, 2018, 8, 1837-1846.	1.4	26
42	Metformin reverses PARP inhibitors-induced epithelial-mesenchymal transition and PD-L1 upregulation in triple-negative breast cancer. American Journal of Cancer Research, 2019, 9, 800-815.	1.4	17
43	Ribonuclease 7-driven activation of ROS1 is a potential therapeutic target in hepatocellular carcinoma. Journal of Hepatology, 2021, 74, 907-918.	3.7	14
44	mMAPS: A Flow-Proteometric Technique to Analyze Protein-Protein Interactions in Individual Signaling Complexes. Science Signaling, 2014, 7, rs1.	3.6	7
45	An essential role of PRMT1-mediated EGFR methylation in EGFR activation by ribonuclease 5. American Journal of Cancer Research, 2019, 9, 180-185.	1.4	4
46	The N-linked glycosylations of TIGIT Asn32 and Asn101 facilitate PVR/TIGIT interaction. Biochemical and Biophysical Research Communications, 2021, 562, 9-14.	2.1	3
47	A tumor vessel-targeting fusion protein elicits a chemotherapeutic bystander effect in pancreatic ductal adenocarcinoma. American Journal of Cancer Research, 2017, 7, 657-672.	1.4	3