
Charles Fox

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6006432/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence of the global COVIDâ€19 pandemic on manuscript submissions and editor and reviewer performance at six ecology journals. Functional Ecology, 2021, 35, 4-10.	3.6	21
2	Which peer reviewers voluntarily reveal their identity to authors? Insights into the consequences of open-identities peer review. Proceedings of the Royal Society B: Biological Sciences, 2021, 288, 20211399.	2.6	3
3	Gender diversity of editorial boards and gender differences in the peer review process at six journals of ecology and evolution. Ecology and Evolution, 2019, 9, 13636-13649.	1.9	46
4	Doubleâ€blind peer review—An experiment. Functional Ecology, 2019, 33, 4-6.	3.6	8
5	Gender differences in peer review outcomes and manuscript impact at six journals of ecology and evolution. Ecology and Evolution, 2019, 9, 3599-3619.	1.9	112
6	Body Size and Life History Traits in Native and Introduced Populations of Coqui Frogs. Copeia, 2018, 106, 161-170.	1.3	5
7	Life history traits, but not body size, vary systematically along latitudinal gradients on three continents in the widespread yellow dung fly. Ecography, 2018, 41, 2080-2091.	4.5	22
8	Evolution of larval competitiveness and associated lifeâ€history traits in response to host shifts in a seed beetle. Journal of Evolutionary Biology, 2018, 31, 302-313.	1.7	18
9	Patterns of authorship in ecology and evolution: First, last, and corresponding authorship vary with gender and geography. Ecology and Evolution, 2018, 8, 11492-11507.	1.9	76
10	Replicated latitudinal clines in reproductive traits of European and North American yellow dung flies. Oikos, 2018, 127, 1619-1632.	2.7	9
11	The effectiveness of journals as arbiters of scientific impact. Ecology and Evolution, 2018, 8, 9566-9585.	1.9	12
12	Towards a mechanistic understanding of global change ecology. Functional Ecology, 2018, 32, 1648-1651.	3.6	9
13	Geographic clines in wing morphology relate to colonization history in New World but not Old World populations of yellow dung flies. Evolution; International Journal of Organic Evolution, 2018, 72, 1629-1644.	2.3	20
14	Authorâ€suggested reviewers: gender differences and influences on the peer review process at an ecology journal. Functional Ecology, 2017, 31, 270-280.	3.6	30
15	30ÂYears of <i>Functional Ecology</i> . Functional Ecology, 2017, 31, 4-6.	3.6	0
16	Language and socioeconomics predict geographic variation in peer review outcomes at an ecology journal. Scientometrics, 2017, 113, 1113-1127.	3.0	12
17	Global phylogeography of the insect pest <i>Callosobruchus maculatus</i> (Coleoptera: Bruchinae) relates to the history of its main host, <i>Vigna unguiculata</i> . Journal of Biogeography, 2017, 44, 2515-2526.	3.0	24
18	Asymmetric evolution of egg laying behavior following reciprocal host shifts by a seed-feeding beetle. Evolutionary Ecology, 2017, 31, 753-767.	1.2	3

#	Article	IF	CITATIONS
19	Difficulty of recruiting reviewers predicts review scores and editorial decisions at six journals of ecology and evolution. Scientometrics, 2017, 113, 465-477.	3.0	21
20	Recruitment of reviewers is becoming harder at some journals: a test of the influence of reviewer fatigue at six journals in ecology and evolution. Research Integrity and Peer Review, 2017, 2, 3.	5.2	53
21	Gender differences in patterns of authorship do not affect peer review outcomes at an ecology journal. Functional Ecology, 2016, 30, 126-139.	3.6	50
22	Editor and reviewer gender influence the peer review process but not peer review outcomes at an ecology journal. Functional Ecology, 2016, 30, 140-153.	3.6	86
23	Citations increase with manuscript length, author number, and references cited in ecology journals. Ecology and Evolution, 2016, 6, 7717-7726.	1.9	110
24	A Balanced Data Archiving Policy for Long-Term Studies. Trends in Ecology and Evolution, 2016, 31, 84-85.	8.7	17
25	Comparison of life history and genetic properties of cowpea bruchid strains and their response to hypoxia. Journal of Insect Physiology, 2015, 75, 5-11.	2.0	13
26	Foraging mode affects the evolution of egg size in generalist predators embedded in complex food webs. Journal of Evolutionary Biology, 2015, 28, 1225-1233.	1.7	3
27	The relationship between manuscript title structure and success: editorial decisions and citation performance for an ecological journal. Ecology and Evolution, 2015, 5, 1970-1980.	1.9	58
28	Functional ecology: the evolution of an ecological journal. Functional Ecology, 2015, 29, 1-2.	3.6	2
29	Functional ecology: moving forward into a new era of publishing. Functional Ecology, 2014, 28, 291-292.	3.6	1
30	Functional ecology: integrative research in the modern age of ecology. Functional Ecology, 2013, 27, 1-4.	3.6	8
31	The effect of inbreeding on natural selection in a seedâ€feeding beetle. Journal of Evolutionary Biology, 2013, 26, 88-93.	1.7	5
32	Effect of Inbreeding on Host Discrimination and Other Fitness Components in a Seed Beetle. Annals of the Entomological Society of America, 2013, 106, 128-135.	2.5	8
33	David H. Reed (24 March 1963-24 October 2011). Animal Conservation, 2012, 15, 113-114.	2.9	Ο
34	Effects of seed beetles on the performance of desert legumes depend on host species, plant stage, and beetle density. Journal of Arid Environments, 2012, 80, 10-16.	2.4	24
35	Male inbreeding status affects female fitness in a seedâ€feeding beetle. Journal of Evolutionary Biology, 2012, 25, 29-37.	1.7	22
36	Inbreeding–stress interactions: evolutionary and conservation consequences. Annals of the New York Academy of Sciences, 2012, 1256, 33-48.	3.8	82

#	Article	IF	CITATIONS
37	INBREEDING DEPRESSION INCREASES WITH ENVIRONMENTAL STRESS: AN EXPERIMENTAL STUDY AND META-ANALYSIS. Evolution; International Journal of Organic Evolution, 2011, 65, 246-258.	2.3	302
38	Inclusive fitness theory and eusociality. Nature, 2011, 471, E1-E4.	27.8	339
39	Natural selection on body size is mediated by multiple interacting factors: a comparison of beetle populations varying naturally and experimentally in body size. Ecology and Evolution, 2011, 1, 1-14.	1.9	45
40	Inbreeding-environment interactions for fitness: complex relationships between inbreeding depression and temperature stress in a seed-feeding beetle. Evolutionary Ecology, 2011, 25, 25-43.	1.2	41
41	Rapid Evolution of Lifespan in a Novel Environment: Sex-Specific Responses and Underlying Genetic Architecture. Evolutionary Biology, 2011, 38, 182-196.	1.1	16
42	Egg-Dumping Behavior is Not Correlated with Wider Host Acceptance in the Seed Beetle <i>Callosobruchus maculatus</i> (Coleoptera: Chrysomelidae: Bruchinae). Annals of the Entomological Society of America, 2011, 104, 850-856.	2.5	6
43	Author and editor comment. Functional Ecology, 2010, 24, 243-243.	3.6	0
44	Biotypes of the seed beetle <i>Callosobruchus maculatus</i> have differing effects on the germination and growth of their legume hosts. Agricultural and Forest Entomology, 2010, 12, 353-362.	1.3	17
45	Sex Differences in Phenotypic Plasticity Affect Variation in Sexual Size Dimorphism in Insects: From Physiology to Evolution. Annual Review of Entomology, 2010, 55, 227-245.	11.8	352
46	All that I am, I owe to my mother. Trends in Ecology and Evolution, 2010, 25, 323-324.	8.7	0
47	Diet affects female mating behaviour in a seedâ€feeding beetle. Physiological Entomology, 2009, 34, 370-378.	1.5	35
48	Genetic architecture underlying convergent evolution of egg-laying behavior in a seed-feeding beetle. Genetica, 2009, 136, 179-187.	1.1	17
49	Environmental effects on sex differences in the genetic load for adult lifespan in a seed-feeding beetle. Heredity, 2009, 103, 62-72.	2.6	23
50	Geographic variation in body size, sexual size dimorphism and fitness components of a seed beetle: local adaptation versus phenotypic plasticity. Oikos, 2009, 118, 703-712.	2.7	76
51	A sexâ€specific size–number tradeoff in clonal broods. Oikos, 2009, 118, 1552-1560.	2.7	21
52	Adaptive Maternal Effects. , 2009, , .		0
53	EXPERIMENTAL EVOLUTION OF THE GENETIC LOAD AND ITS IMPLICATIONS FOR THE GENETIC BASIS OF INBREEDING DEPRESSION. Evolution; International Journal of Organic Evolution, 2008, 62, 2236-2249.	2.3	60
54	SELECTION DOES NOT FAVOR LARGER BODY SIZE AT LOWER TEMPERATURE IN A SEED-FEEDING BEETLE. Evolution; International Journal of Organic Evolution, 2008, 62, 2534-2544.	2.3	22

#	Article	IF	CITATIONS
55	Inbreeding depression in two seed-feeding beetles, Callosobruchus maculatus and Stator limbatus (Coleoptera: Chrysomelidae). Bulletin of Entomological Research, 2007, 97, 49-54.	1.0	34
56	Geographic Variation in Body Size and Sexual Size Dimorphism of a Seedâ€Feeding Beetle. American Naturalist, 2007, 170, 358-369.	2.1	121
57	Smaller beetles are better scramble competitors at cooler temperatures. Biology Letters, 2007, 3, 475-478.	2.3	52
58	Evolution on ecological time-scales. Functional Ecology, 2007, 21, 387-393.	3.6	539
59	Dissecting the evolutionary impacts of plant invasions: bugs and beetles as native guides. Global Change Biology, 2007, 13, 1644-1657.	9.5	22
60	Environmental effects on sexual size dimorphism of a seed-feeding beetle. Oecologia, 2007, 153, 273-280.	2.0	85
61	Phenotypic plasticity in a complex world: interactive effects of food and temperature on fitness components of a seed beetle. Oecologia, 2007, 153, 309-321.	2.0	93
62	Variation in selection, phenotypic plasticity, and the ecology of sexual size dimorphism in two seed-feeding beetles. , 2007, , 88-96.		17
63	WHEN RENSCH MEETS BERGMANN: DOES SEXUAL SIZE DIMORPHISM CHANGE SYSTEMATICALLY WITH LATITUDE?. Evolution; International Journal of Organic Evolution, 2006, 60, 2004.	2.3	47
64	WHEN RENSCH MEETS BERGMANN: DOES SEXUAL SIZE DIMORPHISM CHANGE SYSTEMATICALLY WITH LATITUDE?. Evolution; International Journal of Organic Evolution, 2006, 60, 2004-2011.	2.3	181
65	Selection on body size and sexual size dimorphism differs between host species in a seed-feeding beetle. Journal of Evolutionary Biology, 2006, 19, 1167-1174.	1.7	50
66	Variation in inbreeding depression among populations of the seed beetle, Stator limbatus. Entomologia Experimentalis Et Applicata, 2006, 121, 137-144.	1.4	23
67	Temperature and host species affect nuptial gift size in a seed-feeding beetle. Functional Ecology, 2006, 20, 1003-1011.	3.6	59
68	Population differences in host use by a seed-beetle: local adaptation, phenotypic plasticity and maternal effects. Oecologia, 2006, 150, 247-258.	2.0	78
69	Experimental Evolution of Phenotypic Plasticity: How Predictive Are Crossâ€Environment Genetic Correlations?. American Naturalist, 2006, 168, 323-335.	2.1	64
70	GENETIC AND ENVIRONMENTAL SOURCES OF VARIATION IN SURVIVAL ON NONNATIVE HOST SPECIES IN THE GENERALIST SEED BEETLE, STATOR LIMBATUS. Southwestern Naturalist, 2006, 51, 490-501.	0.1	6
71	The Genetic Architecture of Life Span and Mortality Rates: Gender and Species Differences in Inbreeding Load of Two Seed-Feeding Beetles. Genetics, 2006, 174, 763-773.	2.9	58
72	Ejaculate size, second male size, and moderate polyandry increase female fecundity in a seed beetle. Behavioral Ecology, 2006, 17, 940-946.	2.2	65

#	Article	IF	CITATIONS
73	When Rensch meets Bergmann: does sexual size dimorphism change systematically with latitude?. Evolution; International Journal of Organic Evolution, 2006, 60, 2004-11.	2.3	47
74	Problems in measuring amongâ€family variation in inbreeding depression. American Journal of Botany, 2005, 92, 1929-1932.	1.7	36
75	COMPLEX PATTERNS OF PHENOTYPIC PLASTICITY: INTERACTIVE EFFECTS OF TEMPERATURE DURING REARING AND OVIPOSITION. Ecology, 2005, 86, 924-934.	3.2	132
76	Genetic architecture of population differences in oviposition behaviour of the seed beetle Callosobruchus maculatus. Journal of Evolutionary Biology, 2004, 17, 1141-1151.	1.7	54
77	Complex genetic architecture of population differences in adult lifespan of a beetle: nonadditive inheritance, gender differences, body size and a large maternal effect. Journal of Evolutionary Biology, 2004, 17, 1007-1017.	1.7	71
78	Evolutionary genetics of lifespan and mortality rates in two populations of the seed beetle, Callosobruchus maculatus. Heredity, 2004, 92, 170-181.	2.6	82
79	Oviposition decisions in the seed beetle, Callosobruchus maculatus (Coleoptera: Bruchidae): effects of seed size on superparasitism. Journal of Stored Products Research, 2003, 39, 355-365.	2.6	82
80	Gender differences in lifespan and mortality rates in two seed beetle species. Functional Ecology, 2003, 17, 619-626.	3.6	66
81	Maternal age affects offspring lifespan of the seed beetle, Callosobruchus maculatus. Functional Ecology, 2003, 17, 811-820.	3.6	98
82	EVOLUTIONARY ECOLOGY OF EGG SIZE AND NUMBER IN A SEED BEETLE: GENETIC TRADE-OFF DIFFERS BETWEEN ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2003, 57, 1121-1132.	2.3	111
83	GENETIC VARIATION IN MALE EFFECTS ON FEMALE REPRODUCTION AND THE GENETIC COVARIANCE BETWEEN THE SEXES. Evolution; International Journal of Organic Evolution, 2003, 57, 1359-1366.	2.3	20
84	GENETIC VARIATION IN MALE EFFECTS ON FEMALE REPRODUCTION AND THE GENETIC COVARIANCE BETWEEN THE SEXES. Evolution; International Journal of Organic Evolution, 2003, 57, 1359.	2.3	1
85	Rapid Evolution of Egg Size in Captive Salmon. Science, 2003, 299, 1738-1740.	12.6	262
86	Response to Comment on "Rapid Evolution of Egg Size in Captive Salmon" (II). Science, 2003, 302, 59e-59.	12.6	2
87	Response to Comment on "Rapid Evolution of Egg Size in Captive Salmon" (I). Science, 2003, 302, 59c-59.	12.6	1
88	EVOLUTIONARY ECOLOGY OF EGG SIZE AND NUMBER IN A SEED BEETLE: GENETIC TRADE-OFF DIFFERS BETWEEN ENVIRONMENTS. Evolution; International Journal of Organic Evolution, 2003, 57, 1121.	2.3	10
89	The effect ofWolbachia-induced cytoplasmic incompatibility on host population size in natural and manipulated systems. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 437-445.	2.6	160
90	Proximate Mechanisms Influencing Egg Size Plasticity in the Seed Beetle <1>Stator limbatus 1 (Coleoptera: Bruchidae). Annals of the Entomological Society of America, 2002, 95, 724-734.	2.5	19

#	Article	IF	CITATIONS
91	CONSEQUENCES OF PLANT RESISTANCE FOR HERBIVORE SURVIVORSHIP, GROWTH, AND SELECTION ON EGG SIZE. Ecology, 2001, 82, 2790-2804.	3.2	47
92	Leaf abscission phenology of a scrub oak: consequences for growth and survivorship of a leaf mining beetle. Oecologia, 2001, 127, 251-258.	2.0	27
93	Title is missing!. Genetica, 2001, 112/113, 257-272.	1.1	102
94	Consequences of Plant Resistance for Herbivore Survivorship, Growth, and Selection on Egg Size. Ecology, 2001, 82, 2790.	3.2	4
95	NATURAL SELECTION ON SEED-BEETLE EGG SIZE IN NATURE AND THE LABORATORY: VARIATION AMONG ENVIRONMENTS. Ecology, 2000, 81, 3029-3035.	3.2	63
96	MATERNAL EFFECTS MEDIATE HOST EXPANSION IN ASEED-FEEDING BEETLE. Ecology, 2000, 81, 3-7.	3.2	20
97	Maternal Effects Mediate Host Expansion in a Seed-Feeding Beetle. Ecology, 2000, 81, 3.	3.2	47
98	Paternal Investment in the Seed Beetle <i>Callosobruchus maculatus</i> (Coleoptera: Bruchidae): Variation Among Populations. Annals of the Entomological Society of America, 2000, 93, 1173-1178.	2.5	38
99	Evolutionary Ecology of Progeny Size in Arthropods. Annual Review of Entomology, 2000, 45, 341-369.	11.8	685
100	Natural Selection on Seed-Beetle Egg Size in Nature and the Laboratory: Variation among Environments. Ecology, 2000, 81, 3029.	3.2	6
101	The Evolutionary Genetics of an Adaptive Maternal Effect: Egg Size Plasticity in a Seed Beetle. Evolution; International Journal of Organic Evolution, 1999, 53, 552.	2.3	47
102	The effect of male mating history on paternal investment, fecundity and female remating in the seed beetleCallosobruchus maculatus. Functional Ecology, 1999, 13, 169-177.	3.6	181
103	The effect of male size, age, and mating behavior on sexual selection in the seed beetle <i>Callosobruchus maculatus</i> . Ethology Ecology and Evolution, 1999, 11, 49-60.	1.4	110
104	Maternal Effects on Offspring Size: Variation Through Early Development of Chinook Salmon. Evolution; International Journal of Organic Evolution, 1999, 53, 1605.	2.3	124
105	THE EVOLUTIONARY GENETICS OF AN ADAPTIVE MATERNAL EFFECT: EGG SIZE PLASTICITY IN A SEED BEETLE. Evolution; International Journal of Organic Evolution, 1999, 53, 552-560.	2.3	96
106	MATERNAL EFFECTS ON OFFSPRING SIZE: VARIATION THROUGH EARLY DEVELOPMENT OF CHINOOK SALMON. Evolution; International Journal of Organic Evolution, 1999, 53, 1605-1611.	2.3	149
107	Environmentally Based Maternal Effects on Development Time in the Seed BeetleStator pruininus(Coleoptera: Bruchidae): Consequences of Larval Density. Environmental Entomology, 1999, 28, 217-223.	1.4	22
108	Sexual selection and the fitness consequences of male body size in the seed beetleStator limbatus. Animal Behaviour, 1998, 55, 473-483.	1.9	136

#	Article	IF	CITATIONS
109	Genetic variation in paternal investment in a seed beetle. Animal Behaviour, 1998, 56, 953-961.	1.9	101
110	The adaptive significance of maternal effects. Trends in Ecology and Evolution, 1998, 13, 403-407.	8.7	1,641
111	Inheritance of Environmental Variation in Body Size: Superparasitism of Seeds Affects Progeny and Grandprogeny Body Size Via a Nongenetic Maternal Effect. Evolution; International Journal of Organic Evolution, 1998, 52, 172.	2.3	28
112	Genetic and Maternal Influences on Body Size and Development Time in the Seed Beetle Stator limbatus (Coleoptera: Bruchidae). Annals of the Entomological Society of America, 1998, 91, 128-134.	2.5	12
113	INHERITANCE OF ENVIRONMENTAL VARIATION IN BODY SIZE: SUPERPARASITISM OF SEEDS AFFECTS PROGENY AND GRANDPROGENY BODY SIZE VIA A NONGENETIC MATERNAL EFFECT. Evolution; International Journal of Organic Evolution, 1998, 52, 172-182.	2.3	39
114	The Ecology of Body Size in a Seed Beetle, Stator limbatus: Persistence of Environmental Variation Across Generations?. Evolution; International Journal of Organic Evolution, 1997, 51, 1005.	2.3	17
115	Variation in budbreak phenology affects the distribution of a leafmining beetle (<i>Brachys) Tj ETQq1 1 0.784314</i>	rgBT /Ov 1.4	erlock 10 Tfl 24
116	Original Article. Ecological Entomology, 1997, 22, 416-424.	2.2	12
117	Egg Size Plasticity in a Seed Beetle: An Adaptive Maternal Effect. American Naturalist, 1997, 149, 149-163.	2.1	285
118	THE ECOLOGY OF BODY SIZE IN A SEED BEETLE, <i>STATOR LIMBATUS</i> : PERSISTENCE OF ENVIRONMENTAL VARIATION ACROSS GENERATIONS?. Evolution; International Journal of Organic Evolution, 1997, 51, 1005-1010.	2.3	31
119	Egg-size manipulations in the seed beetle <i>Stator limbatus</i> : consequences for progeny growth. Canadian Journal of Zoology, 1997, 75, 1465-1473.	1.0	36
120	The ecology of diet expansion in a seed-feeding beetle: Pre-existing variation, rapid adaptation and maternal effects?. Evolutionary Ecology, 1997, 11, 183-194.	1.2	60
121	Clutch size manipulations in two seed beetles: consequences for progeny fitness. Oecologia, 1996, 108, 88-94.	2.0	47
122	Larval host plant affects fitness consequences of egg size variation in the seed beetle Stator limbatus. Oecologia, 1996, 107, 541-548.	2.0	124
123	Determinants of Clutch Size and Seed Preference in a Seed Beetle, Stator beali (Coleoptera: Bruchidae). Environmental Entomology, 1995, 24, 1557-1561.	1.4	20
124	Paternal Investment in a Seed Beetle (Coleoptera: Bruchidae): Influence of Male Size, Age, and Mating History. Annals of the Entomological Society of America, 1995, 88, 100-103.	2.5	70
125	Suppression of Leafminer (Coleoptera: Buprestidae) Populations on Turkey Oak (Fagaceae) Using Implants of Acephate. Environmental Entomology, 1995, 24, 1548-1556.	1.4	3
126	Male body size affects female lifetime reproductive success in a seed beetle. Animal Behaviour, 1995, 50, 281-284.	1.9	64

#	Article	IF	CITATIONS
127	Parental Host Plant Affects Offspring Life Histories in a Seed Beetle. Ecology, 1995, 76, 402-411.	3.2	86

128 Dietary Mediation of Maternal Age Effects on Offspring Performance in a Seed Beetle (Coleoptera:) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 50

129	The Influence of Egg Size on Offspring Performance in the Seed Beetle, Callosobruchus maculatus. Oikos, 1994, 71, 321.	2.7	86
130	Host-associated fitness trade-offs do not limit the evolution of diet breadth in the small milkweed bug Lygaeus kalmii (Hemiptera: Lygaeidae). Oecologia, 1994, 97, 382-389.	2.0	26
131	Host-associated fitness variation in a seed beetle (Coleoptera: Bruchidae): evidence for local adaptation to a poor quality host. Oecologia, 1994, 99, 329-336.	2.0	49

Maternal and genetic influences on egg size and larval performance in a seed beetle (Callosobruchus) Tj ETQq0 0 0.2gBT /Overlock 10 Tf 102

133	Influence of Oviposition Substrate on Female Receptivity to Multiple Mating in Callosobruchus maculatus (Coleoptera: Bruchidae). Annals of the Entomological Society of America, 1994, 87, 395-398.	2.5	16
134	Oviposition substrate affects adult mortality, independent of reproduction, in the seed beetle <i>Callosobruchus maculatus</i> . Ecological Entomology, 1994, 19, 108-110.	2.2	15
135	The influence of maternal age and mating frequency on egg size and offspring performance in Callosobruchus maculatus (Coleoptera: Bruchidae). Oecologia, 1993, 96, 139-146.	2.0	231
136	A Quantitative Genetic Analysis of Oviposition Preference and Larval Performance on Two Hosts in the Bruchid Beetle, Callosobruchus maculatus. Evolution; International Journal of Organic Evolution, 1993, 47, 166.	2.3	39
137	Multiple Mating, Lifetime Fecundity and Female Mortality of the Bruchid Beetle, Callosobruchus maculatus (Coleoptera: Bruchidae). Functional Ecology, 1993, 7, 203.	3.6	248
138	A QUANTITATIVE GENETIC ANALYSIS OF OVIPOSITION PREFERENCE AND LARVAL PERFORMANCE ON TWO HOSTS IN THE BRUCHID BEETLE, <i>CALLOSOBRUCHUS MACULATUS </i> . Evolution; International Journal of Organic Evolution, 1993, 47, 166-175.	2.3	90
139	Host Confusion and the Evolution of Insect Diet Breadths. Oikos, 1993, 67, 577.	2.7	75