Huw M L Davies

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/600564/publications.pdf

Version: 2024-02-01

326 papers 28,325 citations

87 h-index 7496 151 g-index

438 all docs

438 docs citations

438 times ranked

10344 citing authors

#	Article	IF	CITATIONS
1	Mechanistically Guided Workflow for Relating Complex Reactive Site Topologies to Catalyst Performance in C–H Functionalization Reactions. Journal of the American Chemical Society, 2022, 144, 1881-1898.	6.6	15
2	Influence of Aryl Substituents on the Alignment of Ligands in the Dirhodium Tetrakis(1,2,2‶riarylcyclopropane―carboxylate) Catalysts. ChemCatChem, 2021, 13, 174-179.	1.8	8
3	Copper-Catalyzed Oxidation of Hydrazones to Diazo Compounds Using Oxygen as the Terminal Oxidant. ACS Catalysis, 2021, 11, 2676-2683.	5 . 5	22
4	Copper(II) Acetate-Induced Oxidation of Hydrazones to Diazo Compounds under Flow Conditions Followed by Dirhodium-Catalyzed Enantioselective Cyclopropanation Reactions. Organic Letters, 2021, 23, 5363-5367.	2.4	13
5	Copper-Catalyzed, Aerobic Oxidation of Hydrazone in a Three-Phase Packed Bed Reactor. Organic Process Research and Development, 2021, 25, 1911-1922.	1.3	8
6	Asymmetric synthesis of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates. Chemical Science, 2021, 12, 11181-11190.	3.7	26
7	A C–H Functionalization Strategy Enables an Enantioselective Formal Synthesis of (â^')-Aflatoxin B ₂ . Organic Letters, 2021, 23, 9393-9397.	2.4	9
8	Rhodiumâ€Catalyzed Enantioselective [4+2] Cycloadditions of Vinylcarbenes with Dienes. Angewandte Chemie, 2020, 132, 4967-4971.	1.6	2
9	Regio- and Stereoselective Rhodium(II)-Catalyzed C–H Functionalization of Cyclobutanes. CheM, 2020, 6, 304-313.	5. 8	30
10	In Situ Kinetic Studies of Rh(II)-Catalyzed Asymmetric Cyclopropanation with Low Catalyst Loadings. ACS Catalysis, 2020, 10, 1161-1170.	5 . 5	38
11	Functionalization of Piperidine Derivatives for the Siteâ€Selective and Stereoselective Synthesis of Positional Analogues of Methylphenidate. Chemistry - A European Journal, 2020, 26, 4236-4241.	1.7	29
12	Distal Allylic/Benzylic Câ^'H Functionalization of Silyl Ethers Using Donor/Acceptor Rhodium(II) Carbenes. Angewandte Chemie - International Edition, 2020, 59, 7397-7402.	7.2	27
13	Rhodiumâ€Catalyzed Enantioselective [4+2] Cycloadditions of Vinylcarbenes with Dienes. Angewandte Chemie - International Edition, 2020, 59, 4937-4941.	7.2	15
14	Comparison of 1,2-Diarylcyclopropanecarboxylates with 1,2,2-Triarylcyclopropanecarboxylates as Chiral Ligands for Dirhodium-Catalyzed Cyclopropanation and $Ca \in H$ Functionalization. Journal of Organic Chemistry, 2020, 85, 12199-12211.	1.7	12
15	Optimized Immobilization Strategy for Dirhodium(II) Carboxylate Catalysts for Câ ⁻³ H Functionalization and Their Implementation in a Packed Bed Flow Reactor. Angewandte Chemie - International Edition, 2020, 59, 19525-19531.	7.2	19
16	Optimized Immobilization Strategy for Dirhodium(II) Carboxylate Catalysts for Câ [^] H Functionalization and Their Implementation in a Packed Bed Flow Reactor. Angewandte Chemie, 2020, 132, 19693-19699.	1.6	1
17	Donor–Acceptor–Acceptor 1,3-Bisdiazo Compounds: An Exploration of Synthesis and Stepwise Reactivity. Organic Letters, 2020, 22, 1791-1795.	2.4	6
18	Distal Allylic/Benzylic Câ^'H Functionalization of Silyl Ethers Using Donor/Acceptor Rhodium(II) Carbenes. Angewandte Chemie, 2020, 132, 7467-7472.	1.6	6

#	Article	IF	Citations
19	Enantioselective C–H functionalization of bicyclo[1.1.1]pentanes. Nature Catalysis, 2020, 3, 351-357.	16.1	49
20	Visible-light mediated oxidative ring expansion of anellated cyclopropanes to fused endoperoxides with antimalarial activity. Organic Chemistry Frontiers, 2020, 7, 1789-1795.	2.3	21
21	Rhodium-Stabilized Diarylcarbenes Behaving as Donor/Acceptor Carbenes. ACS Catalysis, 2020, 10, 6240-6247.	5.5	43
22	Rh(II)-Catalyzed Monocyclopropanation of Pyrroles and Its Application to the Synthesis Pharmaceutically Relevant Compounds. Organic Letters, 2019, 21, 6102-6106.	2.4	25
23	Finding Opportunities from Surprises and Failures. Development of Rhodium-Stabilized Donor/Acceptor Carbenes and Their Application to Catalyst-Controlled C–H Functionalization. Journal of Organic Chemistry, 2019, 84, 12722-12745.	1.7	66
24	Regio- and Stereoselective Rhodium(II)-Catalyzed C–H Functionalization of Organosilanes by Donor/Acceptor Carbenes Derived from Aryldiazoacetates. Organic Letters, 2019, 21, 4910-4914.	2.4	26
25	Dirhodium tetracarboxylates as catalysts for selective intermolecular C–H functionalization. Nature Reviews Chemistry, 2019, 3, 347-360.	13.8	233
26	C–H Functionalization Approach for the Synthesis of Chiral <i>C</i> ₂ -Symmetric 1,5-Cyclooctadiene Ligands. Organic Letters, 2019, 21, 9864-9868.	2.4	10
27	Harnessing the β-Silicon Effect for Regioselective and Stereoselective Rhodium(II)-Catalyzed C–H Functionalization by Donor/Acceptor Carbenes Derived from 1-Sulfonyl-1,2,3-triazoles. Organic Letters, 2018, 20, 2168-2171.	2.4	35
28	Formation of Tertiary Alcohols from the Rhodium-Catalyzed Reactions of Donor/Acceptor Carbenes with Esters. Organic Letters, 2018, 20, 2399-2402.	2.4	11
29	Site-Selective Carbene-Induced C–H Functionalization Catalyzed by Dirhodium Tetrakis(triarylcyclopropanecarboxylate) Complexes. ACS Catalysis, 2018, 8, 678-682.	5.5	48
30	Desymmetrization of cyclohexanes by site- and stereoselective C–H functionalization. Nature, 2018, 564, 395-399.	13.7	100
31	Catalyst-Controlled Selective Functionalization of Unactivated C–H Bonds in the Presence of Electronically Activated C–H Bonds. Journal of the American Chemical Society, 2018, 140, 12247-12255.	6.6	68
32	Comparison of Reactivity and Enantioselectivity between Chiral Bimetallic Catalysts: Bismuthâ€"Rhodium- and Dirhodium-Catalyzed Carbene Chemistry. ACS Catalysis, 2018, 8, 10676-10682.	5.5	33
33	Blue light-promoted photolysis of aryldiazoacetates. Chemical Science, 2018, 9, 5112-5118.	3.7	258
34	An Immobilizedâ€Dirhodium Hollowâ€Fiber Flow Reactor for Scalable and Sustainable Câ^'H Functionalization in Continuous Flow. Angewandte Chemie, 2018, 130, 11089-11093.	1.6	14
35	An Immobilizedâ€Dirhodium Hollowâ€Fiber Flow Reactor for Scalable and Sustainable Câ^'H Functionalization in Continuous Flow. Angewandte Chemie - International Edition, 2018, 57, 10923-10927.	7.2	52
36	Design of catalysts for site-selective and enantioselective functionalization of non-activated primary C–H bonds. Nature Chemistry, 2018, 10, 1048-1055.	6.6	131

#	Article	IF	CITATIONS
37	Rhodium-Catalyzed Intermolecular C–H Functionalization as a Key Step in the Synthesis of Complex Stereodefined l²-Arylpyrrolidines. Organic Letters, 2018, 20, 3771-3775.	2.4	37
38	Synthesis of [3a,7a]-Dihydroindoles by a Tandem Arene Cyclopropanation/3,5-Sigmatropic Rearrangement Reaction. Journal of Organic Chemistry, 2018, 83, 7939-7949.	1.7	14
39	Synthesis of 2,2,2,â€Trichloroethyl Aryl†and Vinyldiazoacetates by Palladiumâ€Catalyzed Crossâ€Coupling. Chemistry - A European Journal, 2017, 23, 3272-3275.	1.7	19
40	Metal-Free C–H Functionalization of Alkanes by Aryldiazoacetates. Organic Letters, 2017, 19, 770-773.	2.4	48
41	Synthesis of Donor/Acceptor-Substituted Diazo Compounds in Flow and Their Application in Enantioselective Dirhodium-Catalyzed Cyclopropanation and C–H Functionalization. Organic Letters, 2017, 19, 3055-3058.	2.4	33
42	Scope of the Reactions of Indolyl- and Pyrrolyl-Tethered <i>N</i> -Sulfonyl-1,2,3-triazoles: Rhodium(II)-Catalyzed Synthesis of Indole- and Pyrrole-Fused Polycyclic Compounds. Organic Letters, 2017, 19, 1504-1507.	2.4	59
43	Rh(II)-Catalyzed Cyclopropanation of Furans and Its Application to the Total Synthesis of Natural Product Derivatives. Organic Letters, 2017, 19, 4722-4725.	2.4	48
44	Rhodium- and Non-Metal-Catalyzed Approaches for the Conversion of Isoxazol-5-ones to 2,3-Dihydro-6 <i>H</i> -1,3-oxazin-6-ones. Organic Letters, 2017, 19, 5158-5161.	2.4	32
45	Collective Approach to Advancing C–H Functionalization. ACS Central Science, 2017, 3, 936-943.	5. 3	175
46	Site-selective and stereoselective functionalization of non-activated tertiary C–H bonds. Nature, 2017, 551, 609-613.	13.7	239
47	Rapid Construction of a Benzoâ€Fused Indoxamycin Core Enabled by Siteâ€Selective Câ^'H Functionalizations. Angewandte Chemie, 2016, 128, 8410-8414.	1.6	4
48	Rhodium(II)-Catalyzed C–H Functionalization of Electron-Deficient Methyl Groups. Journal of the American Chemical Society, 2016, 138, 5761-5764.	6.6	41
49	Site-selective and stereoselective functionalization of unactivated C–H bonds. Nature, 2016, 533, 230-234.	13.7	313
50	Rhodiumâ€Catalyzed [4+3] Cycloaddition to Furans: Direct Access to Functionalized Bicyclo[5.3.0]decane Derivatives. European Journal of Organic Chemistry, 2016, 2016, 41-44.	1.2	11
51	Rapid Construction of a Benzoâ€Fused Indoxamycin Core Enabled by Siteâ€Selective Câ^'H Functionalizations. Angewandte Chemie - International Edition, 2016, 55, 8270-8274.	7.2	34
52	Enantioselective Intermolecular C–H Functionalization of Allylic and Benzylic sp3 C–H Bonds Using N-Sulfonyl-1,2,3-triazoles. Organic Letters, 2016, 18, 3118-3121.	2.4	53
53	Recent Advances in C–H Functionalization. Journal of Organic Chemistry, 2016, 81, 343-350.	1.7	504
54	Iridium(<scp>iii</scp>)-bis(imidazolinyl)phenyl catalysts for enantioselective C–H functionalization with ethyl diazoacetate. Chemical Science, 2016, 7, 3142-3146.	3.7	53

#	Article	IF	Citations
55	A New Collaborative Approach For Chemists. Chemical & Engineering News, 2015, 93, 32-33.	0.2	1
56	Concise Syntheses of Dictyodendrins A and F by a Sequential C–H Functionalization Strategy. Journal of the American Chemical Society, 2015, 137, 644-647.	6.6	129
57	Stereoselective Synthesis of Highly Substituted Cyclohexanes by a Rhodium-Carbene Initiated Domino Sequence. Organic Letters, 2015, 17, 794-797.	2.4	24
58	Late-stage C–H functionalization of complex alkaloids and drug molecules via intermolecular rhodium-carbenoid insertion. Nature Communications, 2015, 6, 5943.	5.8	113
59	Enantioselective dirhodium(II)-catalyzed cyclopropanations with trimethylsilylethyl and trichloroethyl aryldiazoacetates. Tetrahedron, 2015, 71, 7415-7420.	1.0	38
60	Using IR vibrations to quantitatively describe and predict site-selectivity in multivariate Rh-catalyzed C–H functionalization. Chemical Science, 2015, 6, 3057-3062.	3.7	45
61	Composite Polymer/Oxide Hollow Fiber Contactors: Versatile and Scalable Flow Reactors for Heterogeneous Catalytic Reactions in Organic Synthesis. Angewandte Chemie - International Edition, 2015, 54, 6470-6474.	7.2	50
62	Reversal of the Regiochemistry in the Rhodiumâ€Catalyzed [4+3] Cycloaddition between Vinyldiazoacetates and Dienes. Angewandte Chemie - International Edition, 2014, 53, 13083-13087.	7.2	61
63	2,2,2-Trichloroethyl Aryldiazoacetates as Robust Reagents for the Enantioselective C–H Functionalization of Methyl Ethers. Journal of the American Chemical Society, 2014, 136, 17718-17721.	6.6	94
64	Diversity-oriented synthesis as a tool for identifying new modulators of mitosis. Nature Communications, 2014, 5, 3155.	5.8	73
65	Enantioselective Synthesis of (â^')-Maoecrystal V by Enantiodetermining C–H Functionalization. Journal of the American Chemical Society, 2014, 136, 17738-17749.	6.6	101
66	Neuartige Syntheseplanung dank C-H-Funktionalisierung - im Team effizienter. Angewandte Chemie, 2014, 126, 10422-10424.	1.6	3
67	Synthesis of Complex Hexacyclic Compounds via a Tandem Rh(II)-Catalyzed Double-Cyclopropanation/Cope Rearrangement/Diels–Alder Reaction. Organic Letters, 2014, 16, 4794-4797.	2.4	20
68	CH Functionalization: Collaborative Methods to Redefine Chemical Logic. Angewandte Chemie - International Edition, 2014, 53, 10256-10258.	7.2	22
69	Highly stereoselective synthesis of cyclopentanes bearing four stereocentres by a rhodium carbene-initiated domino sequence. Nature Communications, 2014, 5, 4455.	5.8	39
70	Reactions of metallocarbenes derived from N-sulfonyl-1,2,3-triazoles. Chemical Society Reviews, 2014, 43, 5151.	18.7	529
71	Role of Sterically Demanding Chiral Dirhodium Catalysts in Site-Selective C–H Functionalization of Activated Primary C–H Bonds. Journal of the American Chemical Society, 2014, 136, 9792-9796.	6.6	152
72	Mild Aminoacylation of Indoles and Pyrroles through a Three-Component Reaction with Ynol Ethers and Sulfonyl Azides. Journal of the American Chemical Society, 2014, 136, 10266-10269.	6.6	124

#	Article	IF	Citations
73	Role of <i>Ortho</i> -Substituents on Rhodium-Catalyzed Asymmetric Synthesis of β-Lactones by Intramolecular Câ€"H Insertions of Aryldiazoacetates. Organic Letters, 2014, 16, 3036-3039.	2.4	47
74	Rhodiumâ€Catalyzed Tandem Cyclopropanation/Cope Rearrangement of 4â€Alkenylâ€1â€sulfonylâ€1,2,3â€triazowith Dienes. Angewandte Chemie - International Edition, 2013, 52, 10044-10047.	oles 7.2	114
75	Conversion of Cyclic Ketones to 2,3-Fused Pyrroles and Substituted Indoles. Journal of the American Chemical Society, 2013, 135, 11712-11715.	6.6	163
76	Enantioselective Gold(I)-Catalyzed Vinylogous $[3 + 2]$ Cycloaddition between Vinyldiazoacetates and Enol Ethers. Journal of the American Chemical Society, 2013, 135, 13314-13317.	6.6	116
77	Reactions of Indoles with Metal-Bound Carbenoids. Advances in Heterocyclic Chemistry, 2013, 110, 43-72.	0.9	16
78	Silica-Immobilized Chiral Dirhodium(II) Catalyst for Enantioselective Carbenoid Reactions. Organic Letters, 2013, 15, 6136-6139.	2.4	66
79	Rh ₂ (<i>Rc/i>-TPCP)₄-Catalyzed Enantioselective [3+2]-Cycloaddition between Nitrones and Vinyldiazoacetates. Journal of the American Chemical Society, 2013, 135, 14516-14519.</i>	6.6	97
80	Enantioselective Synthesis of 2-Arylbicyclo [1.1.0] butane Carboxylates. Organic Letters, 2013, 15, 310-313.	2.4	40
81	Rhodium-Catalyzed Conversion of Furans to Highly Functionalized Pyrroles. Journal of the American Chemical Society, 2013, 135, 4716-4718.	6.6	215
82	Sequential Câ€"H Functionalization Reactions for the Enantioselective Synthesis of Highly Functionalized 2,3-Dihydrobenzofurans. Journal of the American Chemical Society, 2013, 135, 6774-6777.	6.6	142
83	Iridium(iii)-bis(oxazolinyl)phenyl catalysts for enantioselective C–H functionalization. Chemical Science, 2013, 4, 2590.	3.7	49
84	Rhodium-catalyzed enantioselective cyclopropanation of electron-deficient alkenes. Chemical Science, 2013, 4, 2844.	3.7	116
85	Catalytic Asymmetric Synthesis of Pyrroloindolines via a Rhodium(II)-Catalyzed Annulation of Indoles. Journal of the American Chemical Society, 2013, 135, 6802-6805.	6.6	345
86	Influence of an Internal Trifluoromethyl Group on the Rhodium(II)-Catalyzed Reactions of Vinyldiazocarbonyl Compounds. Journal of Organic Chemistry, 2013, 78, 4239-4244.	1.7	15
87	Guide to enantioselective dirhodium(II)-catalyzed cyclopropanation with aryldiazoacetates. Tetrahedron, 2013, 69, 5765-5771.	1.0	43
88	Rhodium(II)-Catalyzed Stereoselective Synthesis of Allylsilanes. Organic Letters, 2013, 15, 6120-6123.	2.4	14
89	Silver-Catalyzed Vinylogous Fluorination of Vinyl Diazoacetates. Organic Letters, 2013, 15, 6152-6154.	2.4	60
90	Direct Spectroscopic Characterization of a Transitory Dirhodium Donor-Acceptor Carbene Complex. Science, 2013, 342, 351-354.	6.0	165

#	Article	IF	CITATIONS
91	Metal-Free N–H Insertions of Donor/Acceptor Carbenes. Organic Letters, 2012, 14, 4626-4629.	2.4	63
92	Expanding the Scope of Donor/Acceptor Carbenes to <i>N</i> -Phthalimido Donor Groups: Diastereoselective Synthesis of 1-Cyclopropane α-Amino Acids. Organic Letters, 2012, 14, 6020-6023.	2.4	124
93	Scope and Mechanistic Analysis of the Enantioselective Synthesis of Allenes by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Propargylic Alcohols. Journal of the American Chemical Society, 2012, 134, 15497-15504.	6.6	177
94	Rhodium-Catalyzed Enantioselective Vinylogous Addition of Enol Ethers to Vinyldiazoacetates. Journal of the American Chemical Society, 2012, 134, 18241-18244.	6.6	82
95	Gold(I)-Catalyzed Asymmetric Cyclopropenation of Internal Alkynes. Journal of the American Chemical Society, 2012, 134, 11916-11919.	6.6	205
96	Novel Aromatase Inhibitors by Structure-Guided Design. Journal of Medicinal Chemistry, 2012, 55, 8464-8476.	2.9	156
97	Convenient method for the functionalization of the 4- and 6-positions of the androgen skeleton. Chemical Communications, 2012, 48, 5838.	2.2	20
98	Social Dominance in Female Monkeys: Dopamine Receptor Function and Cocaine Reinforcement. Biological Psychiatry, 2012, 72, 414-421.	0.7	78
99	C–H Functionalization. Beilstein Journal of Organic Chemistry, 2012, 8, 1552-1553.	1.3	3
100	The Combined C–H Functionalization/Cope Rearrangement: Discovery and Applications in Organic Synthesis. Accounts of Chemical Research, 2012, 45, 923-935.	7.6	284
101	Rh ₂ (<i>S</i> -biTISP) ₂ -Catalyzed Asymmetric Functionalization of Indoles and Pyrroles with Vinylcarbenoids. Organic Letters, 2012, 14, 1934-1937.	2.4	107
102	Alkynoate Synthesis through the Vinylogous Reactivity of Rhodium(II) Carbenoids. Angewandte Chemie - International Edition, 2012, 51, 8636-8639.	7. 2	32
103	Highly Stereoselective C–C Bond Formation by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Chiral Allylic Alcohols. Journal of the American Chemical Society, 2012, 134, 10942-10946.	6.6	78
104	Asymmetric synthesis of highly functionalized cyclopentanes by a rhodium- and scandium-catalyzed five-step domino sequence. Chemical Science, 2011, 2, 2378.	3.7	54
105	Vinylogous reactivity of silver(<scp>i</scp>) vinylcarbenoids. Chemical Science, 2011, 2, 457-461.	3.7	99
106	Thermally Induced Cycloadditions of Donor/Acceptor Carbenes. Organic Letters, 2011, 13, 4284-4287.	2.4	61
107	<i>D</i> ₂ -Symmetric Dirhodium Catalyst Derived from a 1,2,2-Triarylcyclopropanecarboxylate Ligand: Design, Synthesis and Application. Journal of the American Chemical Society, 2011, 133, 19198-19204.	6.6	180
108	C–H Functionalization in organic synthesis. Chemical Society Reviews, 2011, 40, 1855.	18.7	494

#	Article	IF	Citations
109	Combined Câ€"H Functionalization/Cope Rearrangement with Vinyl Ethers as a Surrogate for the Vinylogous Mukaiyama Aldol Reaction. Journal of the American Chemical Society, 2011, 133, 11940-11943.	6.6	61
110	Guiding principles for site selective and stereoselective intermolecular C–H functionalization by donor/acceptor rhodium carbenes. Chemical Society Reviews, 2011, 40, 1857.	18.7	916
111	On the Mechanism and Selectivity of the Combined Câ^'H Activation/Cope Rearrangement. Journal of the American Chemical Society, 2011, 133, 5076-5085.	6.6	92
112	Sequential Rhodium-, Silver-, and Gold-Catalyzed Synthesis of Fused Dihydrofurans. Organic Letters, 2011, 13, 4316-4319.	2.4	36
113	Silver Triflate-Catalyzed Cyclopropenation of Internal Alkynes with Donor-Acceptor-Substituted Diazo Compounds. Organic Letters, 2011, 13, 3984-3987.	2.4	97
114	Rhodium(II)â€Catalyzed Crossâ€Coupling of Diazo Compounds. Angewandte Chemie - International Edition, 2011, 50, 2544-2548.	7.2	114
115	Sequential Transformations to Access Polycyclic Chemotypes: Asymmetric Crotylation and Metal Carbenoid Reactions. Angewandte Chemie - International Edition, 2011, 50, 5938-5942.	7.2	29
116	Computationally Guided Stereocontrol of the Combined CH Functionalization/Cope Rearrangement. Angewandte Chemie - International Edition, 2011, 50, 9370-9373.	7.2	33
117	Rh2(S-PTAD)4-catalyzed asymmetric cyclopropenation of aryl alkynes. Tetrahedron, 2011, 67, 4313-4317.	1.0	61
118	Rhodium Carbenoid Approach for Introduction of 4-Substituted ($\langle i \rangle Z \langle i \rangle$)-Pent-2-enoates into Sterically Encumbered Pyrroles and Indoles. Organic Letters, 2010, 12, 924-927.	2.4	72
119	Highly Enantioselective Rh ₂ (<i>S</i> -DOSP) ₄ -Catalyzed Cyclopropenation of Alkynes with Styryldiazoacetates. Journal of the American Chemical Society, 2010, 132, 17211-17215.	6.6	108
120	Rhodium-Catalyzed $[3+2]$ Annulation of Indoles. Journal of the American Chemical Society, 2010, 132, 440-441.	6.6	268
121	Catalyst-Controlled Formal [4 + 3] Cycloaddition Applied to the Total Synthesis of (+)-Barekoxide and (â^')-Barekol. Journal of the American Chemical Society, 2010, 132, 12422-12425.	6.6	100
122	Controlling Factors for Câ^'H Functionalization versus Cyclopropanation of Dihydronaphthalenes. Journal of Organic Chemistry, 2010, 75, 1927-1939.	1.7	48
123	Solvent-free catalytic enantioselective C–C bond forming reactions with very high catalyst turnover numbers. Chemical Science, 2010, 1, 254.	3.7	63
124	Enantioselective Câ [^] C Bond Formation by Rhodium-Catalyzed Tandem Ylide Formation/[2,3]-Sigmatropic Rearrangement between Donor/Acceptor Carbenoids and Allylic Alcohols. Journal of the American Chemical Society, 2010, 132, 396-401.	6.6	106
125	Towards the Total Synthesis of 3-Hydroxyvibsanin E. Synthesis, 2009, 2009, 2840-2846.	1.2	5
126	Rhodium Carbenoid Induced Intermolecular C-H Functionalization at Tertiary C-H Bonds. Synlett, 2009, 2009, 151-154.	1.0	8

#	Article	IF	Citations
127	Functionalization of Carbon–Hydrogen Bonds Through Transition Metal Carbenoid Insertion. Topics in Current Chemistry, 2009, 292, 303-345.	4.0	65
128	Synthetic lessons from nature. Nature, 2009, 459, 786-787.	13.7	12
129	Expanding the art of synthesis. Nature Chemistry, 2009, 1, 519-520.	6.6	3
130	Intermolecular Câ \in "H functionalization versus cyclopropanation of electron rich 1,1-disubstituted and trisubstituted alkenes. Tetrahedron, 2009, 65, 3052-3061.	1.0	44
131	1-Naphthyl and 4-indolyl arylalkylamines as selective monoamine reuptake inhibitors. Bioorganic and Medicinal Chemistry Letters, 2009, 19, 58-61.	1.0	12
132	Computational Study on the Selectivity of Donor/Acceptor-Substituted Rhodium Carbenoids. Journal of Organic Chemistry, 2009, 74, 6555-6563.	1.7	169
133	Total Synthesis of (±)-Vibsanin E. Australian Journal of Chemistry, 2009, 62, 980.	0.5	19
134	Asymmetric [4 + 3] Cycloadditions between Vinylcarbenoids and Dienes: Application to the Total Synthesis of the Natural Product (â°')-5-epi-Vibsanin E. Journal of the American Chemical Society, 2009, 131, 8329-8332.	6.6	144
135	Application of donor/acceptor-carbenoids to the synthesis of natural products. Chemical Society Reviews, 2009, 38, 3061.	18.7	423
136	Enantioselective Reactions of Donor/Acceptor Carbenoids Derived from α-Aryl-α-Diazoketones. Organic Letters, 2009, 11, 787-790.	2.4	103
137	Combined Experimental and Computational Studies of Heterobimetallic Biâ^'Rh Paddlewheel Carboxylates as Catalysts for Metal Carbenoid Transformations. Journal of Organic Chemistry, 2009, 74, 6564-6571.	1.7	61
138	Rapid complexity generation in natural product total synthesis. Chemical Society Reviews, 2009, 38, 2981.	18.7	55
139	High symmetry dirhodium(II) paddlewheel complexes as chiral catalysts. Coordination Chemistry Reviews, 2008, 252, 545-555.	9.5	222
140	Efficient route to 2H-1,3-oxazines through ring expansion of isoxazoles by rhodium carbenoids. Tetrahedron, 2008, 64, 6901-6908.	1.0	73
141	Metabonomic and Microbiological Analysis of the Dynamic Effect of Vancomycin-Induced Gut Microbiota Modification in the Mouse. Journal of Proteome Research, 2008, 7, 3718-3728.	1.8	202
142	Catalytic C–H functionalization by metal carbenoid and nitrenoid insertion. Nature, 2008, 451, 417-424.	13.7	2,064
143	Asymmetric [4 + 3] Cycloadditions between Benzofuranyldiazoacetates and Dienes:  Formal Synthesis of (+)-Frondosin B. Organic Letters, 2008, 10, 573-576.	2.4	85
144	One-Pot Synthesis of Highly Functionalized Pyridines via a Rhodium Carbenoid Induced Ring Expansion of Isoxazoles. Journal of the American Chemical Society, 2008, 130, 8602-8603.	6.6	195

#	Article	IF	Citations
145	Chapter 11 Total syntheses of natural products using the combine C-H activation/cope rearrangement as the key step. Strategies and Tactics in Organic Synthesis, 2008, 7, 383-407.	0.1	1
146	Stereoselective construction of nitrile-substituted cyclopropanes. Chemical Communications, 2008, , 1238.	2.2	53
147	Influence of Electron-Deficient Ruthenium(I) Carbonyl Carboxylates on the Vinylogous Reactivity of Metal Carbenoids. Organometallics, 2008, 27, 1750-1757.	1.1	47
148	In Vivo Characterization of a Novel Phenylisothiocyanate Tropane Analog at Monoamine Transporters in Rat Brain. Journal of Pharmacology and Experimental Therapeutics, 2008, 326, 587-595.	1.3	4
149	Enantioselective Synthesis of Trifluoromethyl-Substituted Cyclopropanes. Organic Letters, 2007, 9, 2625-2628.	2.4	121
150	Enhancement of Cyclopropanation Chemistry in the Silver-Catalyzed Reactions of Aryldiazoacetates. Journal of the American Chemical Society, 2007, 129, 6090-6091.	6.6	155
151	Intermolecular reactions of electron-rich heterocycles with copper and rhodium carbenoids. Chemical Society Reviews, 2007, 36, 1109 .	18.7	250
152	Organometallics in heterocyclic chemistry. Chemical Society Reviews, 2007, 36, 1035.	18.7	1
153	Balance between Allylic Câ^'H Activation and Cyclopropanation in the Reactions of Donor/Acceptor-Substituted Rhodium Carbenoids with trans-Alkenes. Organic Letters, 2007, 9, 4971-4974.	2.4	62
154	Synthetic and Isolation Studies Related to the Marine Natural Products (+)-Elisabethadione and (+)-Elisabethamine. Journal of Organic Chemistry, 2007, 72, 1895-1900.	1.7	35
155	Asymmetric Synthesis of Tropanes by Rhodium-Catalyzed [4 + 3] Cycloaddition. Journal of the American Chemical Society, 2007, 129, 10312-10313.	6.6	181
156	Mechanistic Studies of UV Assisted $[4 + 2]$ Cycloadditions in Synthetic Efforts toward Vibsanin E. Journal of the American Chemical Society, 2007, 129, 10763-10772.	6.6	32
157	Irreversible binding of a novel phenylisothiocyanate tropane analog to monoamine transporters in rat brain. Biochemical Pharmacology, 2007, 74, 336-344.	2.0	3
158	Enantioselective synthesis of \hat{l}^2 -amino esters and its application to the synthesis of the enantiomers of the antidepressant Venlafaxine. Chemical Communications, 2006, , 3110-3112.	2.2	55
159	Dirhodium Tetracarboxylate Derived from Adamantylglycine as a Chiral Catalyst for Carbenoid Reactions. Organic Letters, 2006, 8, 3437-3440.	2.4	175
160	Dirhodium Tetracarboxylates Derived from Adamantylglycine as Chiral Catalysts for Enantioselective Câ ⁻ 'H Aminations. Organic Letters, 2006, 8, 5013-5016.	2.4	242
161	Diversity Synthesis Using the Complimentary Reactivity of Rhodium(II)- and Palladium(II)-Catalyzed Reactions. Journal of Organic Chemistry, 2006, 71, 5594-5598.	1.7	21
162	Investigation into Factors Influencing Stereoselectivity in the Reactions of Heterocycles with Donorâ-'Acceptor-Substituted Rhodium Carbenoids. Journal of Organic Chemistry, 2006, 71, 5349-5356.	1.7	91

#	Article	IF	Citations
163	Câ^'H Activation as a Strategic Reaction:Â Enantioselective Synthesis of 4-Substituted Indoles. Journal of the American Chemical Society, 2006, 128, 1060-1061.	6.6	67
164	Combined Câ^'H Activation/Cope Rearrangement as a Strategic Reaction in Organic Synthesis:Â Total Synthesis of (â^')-Colombiasin A and (â^')-Elisapterosin B. Journal of the American Chemical Society, 2006, 128, 2485-2490.	6.6	180
165	Recent Advances in Catalytic Enantioselective Intermolecular Cĩ£¿H Functionalization. Angewandte Chemie - International Edition, 2006, 45, 6422-6425.	7.2	222
166	Formal Enantioselective [4+3] Cycloaddition by a Tandem Diels–Alder Reaction/Ring Expansion. Advanced Synthesis and Catalysis, 2006, 348, 2449-2456.	2.1	29
167	Direct Synthesis of (+)-Erogorgiaene through a Kinetic Enantiodifferentiating Step. Angewandte Chemie - International Edition, 2005, 44, 1733-1735.	7.2	90
168	Recent Advances in Catalytic Intramolecular CH Aminations. Angewandte Chemie - International Edition, 2005, 44, 3518-3520.	7.2	253
169	Catalytic Asymmetric Reactions for Organic Synthesis: The Combined C?H Activation/Siloxy-Cope Rearrangement ChemInform, 2005, 36, no.	0.1	0
170	Metal Carbene Promoted Sequential Transformations for the Enantioselective Synthesis of Highly Functionalized Cycloheptadienes ChemInform, 2005, 36, no.	0.1	0
171	Recent Advances in Catalytic Intramolecular Câ€"H Aminations. ChemInform, 2005, 36, no.	0.1	0
172	Universal Strategy for the Immobilization of Chiral Dirhodium Catalysts ChemInform, 2005, 36, no.	0.1	0
173	Lewis Acid Catalyzed Tandem Diels—Alder Reaction/Retro-Claisen Rearrangement as an Equivalent of the Inverse Electron Demand Hetero Diels—Alder Reaction ChemInform, 2005, 36, no.	0.1	0
174	Time-Dependent Changes in Receptor/G-Protein Coupling in Rat Brain following Chronic Monoamine Transporter Blockade. Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 510-517.	1.3	9
175	Metal Carbene-Promoted Sequential Transformations for the Enantioselective Synthesis of Highly Functionalized Cycloheptadienes. Journal of the American Chemical Society, 2005, 127, 1342-1343.	6.6	71
176	Sequential Cycloaddition Approach to the Tricyclic Core of Vibsanin E. Total Synthesis of (\hat{A}_{\pm}) -5-epi-10-epi-Vibsanin E. Organic Letters, 2005, 7, 5561-5563.	2.4	43
177	Enantioselective Double Câ^'H Activation of Dihydronaphthalenes. Organic Letters, 2005, 7, 2293-2296.	2.4	31
178	Asymmetric Intermolecular Câ^'H Functionalization of Benzyl Silyl Ethers Mediated by Chiral Auxiliary-Based Aryldiazoacetates and Chiral Dirhodium Catalysts. Journal of Organic Chemistry, 2005, 70, 10737-10742.	1.7	53
179	Universal Strategy for the Immobilization of Chiral Dirhodium Catalysts. Organic Letters, 2005, 7, 2941-2944.	2.4	93
180	Effects of long-term biogenic amine transporter blockade on receptor/G-protein coupling in rat brain. Neuropharmacology, 2005, 48, 62-71.	2.0	7

#	Article	IF	CITATIONS
181	Catalytic and enantioselective allylic C–H activation with donor–acceptor-substituted carbenoids. Organic and Biomolecular Chemistry, 2005, 3, 4176.	1.5	69
182	Lewis Acid-Catalyzed Tandem Dielsâ^'Alder Reaction/Retro-Claisen Rearrangement as an Equivalent of the Inverse Electron Demand Hetero Dielsâ^'Alder Reaction. Journal of Organic Chemistry, 2005, 70, 6680-6684.	1.7	37
183	Asymmetric Catalysis Special Feature Part I: Catalytic asymmetric reactions for organic synthesis: The combined CH activation/Cope rearrangement. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 5472-5475.	3.3	56
184	Effects of the dopamine reuptake inhibitor PTT on reinstatement and on food- and cocaine-maintained responding in rhesus monkeys. Psychopharmacology, 2004, 174, 246-53.	1.5	12
185	Lewis Acid Induced Tandem Diels—Alder Reaction/Ring Expansion as an Equivalent of a [4 + 3] Cycloaddition ChemInform, 2004, 35, no.	0.1	0
186	Simple Strategy for the Immobilization of Dirhodium Tetraprolinate Catalysts Using a Pyridine-Linked Solid Support ChemInform, 2004, 35, no.	0.1	0
187	Dirhodium(II) Tetra(N-(dodecylbenzenesulfonyl)prolinate) Catalyzed Enantioselective Cyclopropenation of Alkynes ChemInform, 2004, 35, no.	0.1	0
188	Synthesis of Methylphenidate Analogues and Their Binding Affinities at Dopamine and Serotonin Transport Sites ChemInform, 2004, 35, no.	0.1	0
189	Enantioselective Synthesis of Cyclopropylphosphonates Containing Quaternary Stereocenters Using a D2-Symmetric Chiral Catalyst Rh2(S-biTlSP)2 ChemInform, 2004, 35, no.	0.1	0
190	Double C—H Activation Strategy for the Asymmetric Synthesis of C2-Symmetric Anilines ChemInform, 2004, 35, no.	0.1	0
191	Highly Diastereoselective and Enantioselective C—H Functionalization of 1,2-Dihydronaphthalenes: A Combined C—H Activation/Cope Rearrangement Followed by a Retro-Cope Rearrangement ChemInform, 2004, 35, no.	0.1	0
192	Synthesis of methylphenidate analogues and their binding affinities at dopamine and serotonin transport sites. Bioorganic and Medicinal Chemistry Letters, 2004, 14, 1799-1802.	1.0	34
193	Catalytic Asymmetric Reactions for Organic Synthesis:Â The Combined Câ^'H Activation/Siloxy-Cope Rearrangement. Journal of Organic Chemistry, 2004, 69, 9241-9247.	1.7	49
194	Dirhodium(II) Tetra(N-(dodecylbenzenesulfonyl)prolinate) Catalyzed Enantioselective Cyclopropenation of Alkynes. Organic Letters, 2004, 6, 1233-1236.	2.4	115
195	Simple Strategy for the Immobilization of Dirhodium Tetraprolinate Catalysts Using a Pyridine-Linked Solid Support. Journal of the American Chemical Society, 2004, 126, 4271-4280.	6.6	95
196	Lewis Acid Induced Tandem Dielsâ^'Alder Reaction/Ring Expansion as an Equivalent of a [4 + 3] Cycloaddition. Journal of the American Chemical Society, 2004, 126, 2692-2693.	6.6	63
197	Double Câ^'H Activation Strategy for the Asymmetric Synthesis of C2-Symmetric Anilines. Organic Letters, 2004, 6, 1769-1772.	2.4	74
198	Highly Diastereoselective and Enantioselective Câ^'H Functionalization of 1,2-Dihydronaphthalenes:Â A Combined Câ^'H Activation/Cope Rearrangement Followed by a Retro-Cope Rearrangement. Journal of the American Chemical Society, 2004, 126, 10862-10863.	6.6	92

#	Article	IF	CITATIONS
199	Effects of $2\hat{l}^2$ -propanoyl- $3\hat{l}^2$ -(4-tolyl)-tropane (PTT) on the self-administration of cocaine, heroin, and cocaine/heroin combinations in rats. Drug and Alcohol Dependence, 2004, 73, 259-265.	1.6	9
200	Enantioselective Synthesis of Cyclopropylphosphonates Containing Quaternary Stereocenters Using aD2-Symmetric Chiral Catalyst Rh2(S-biTISP)2. Organic Letters, 2004, 6, 2117-2120.	2.4	46
201	Effect of HD-23, a potent long acting cocaine-analog, on cocaine self-administration in rats. Psychopharmacology, 2003, 167, 386-392.	1.5	9
202	Influence of aÎ ² -Alkoxy Substituent on the CH Activation Chemistry of Alkyl Ethers. Advanced Synthesis and Catalysis, 2003, 345, 1133-1138.	2.1	31
203	Rhodium Carboxylate Catalyzed Decomposition of Vinyldiazoacetates in the Presence of Heterodienes: Enantioselective Synthesis of the 6-Azabicyclo[3.2.2]nonane and 6-Azabicyclo[3.2.2]nonanone Ring Systems ChemInform, 2003, 34, no.	0.1	0
204	Asymmetric Intermolecular C—H Activation, Using Immobilized Dirhodium Tetrakis((S)-N-(dodecylbenzenesulfonyl)prolinate) as a Recoverable Catalyst ChemInform, 2003, 34, no.	0.1	0
205	New Strategic Reactions for Organic Synthesis: Catalytic Asymmetric C—H Activation α to Nitrogen as a Surrogate for the Mannich Reaction ChemInform, 2003, 34, no.	0.1	90
206	Catalytic Enantioselective Câ€"H Activation by Means of Metalâ€"Carbenoid-Induced Câ€"H Insertion. ChemInform, 2003, 34, no.	0.1	0
207	New Strategic Reactions for Organic Synthesis: Catalytic Asymmetric C—H Activation α to Oxygen as a Surrogate to the Aldol Reaction ChemInform, 2003, 34, no.	0.1	0
208	Intermolecular Câ€"H activation at benzylic positions: synthesis of (+)-imperanene and (â^')-α-conidendrin. Tetrahedron: Asymmetry, 2003, 14, 941-949.	1.8	83
209	Isotope Effects and the Nature of Selectivity in Rhodium-Catalyzed Cyclopropanations. Journal of the American Chemical Society, 2003, 125, 15902-15911.	6.6	142
210	Catalytic Enantioselective Câ^'H Activation by Means of Metalâ^'Carbenoid-Induced Câ^'H Insertion. Chemical Reviews, 2003, 103, 2861-2904.	23.0	1,516
211	New Strategic Reactions for Organic Synthesis: Â Catalytic Asymmetric Câ $^{\circ}$ H Activation Î $_{\pm}$ to Oxygen as a Surrogate to the Aldol Reaction. Journal of Organic Chemistry, 2003, 68, 6126-6132.	1.7	72
212	Dirhodium Tetraprolinate-Catalyzed Asymmetric Cyclopropanations with High Turnover Numbers. Organic Letters, 2003, 5, 1403-1406.	2.4	83
213	New Strategic Reactions for Organic Synthesis: Â Catalytic Asymmetric Câ $^{\circ}$ H Activation Î $^{\pm}$ to Nitrogen as a Surrogate for the Mannich Reaction. Journal of the American Chemical Society, 2003, 125, 6462-6468.	6.6	130
214	Asymmetric Intermolecular Câ^'H Activation, Using Immobilized Dirhodium Tetrakis((S)-N-(dodecylbenzenesulfonyl)- prolinate) as a Recoverable Catalyst. Organic Letters, 2003, 5, 479-482.	2.4	77
215	Direct gas-phase interaction of aryldiazoacetates and dirhodium catalystsElectronic supplementary information (ESI) available: 1H NMR spectra for compounds 1 and 2. See http://www.rsc.org/suppdata/dt/b3/b309809p/. Dalton Transactions, 2003, , 4221.	1.6	14
216	The Reinforcing Efficacy of Psychostimulants in Rhesus Monkeys: The Role of Pharmacokinetics and Pharmacodynamics. Journal of Pharmacology and Experimental Therapeutics, 2003, 307, 356-366.	1.3	68

#	Article	IF	Citations
217	Catalytic Asymmetric Cyclopropanation Using Bridged Dirhodium Tetraprolinates on Solid Support. Organic Letters, 2002, 4, 1989-1992.	2.4	63
218	Rhodium Carboxylate Catalyzed Decomposition of Vinyldiazoacetates in the Presence of Heterodienes:Â Enantioselective Synthesis of the 6-Azabicyclo[3.2.2]nonane and 6-Azabicyclo[3.2.2]nonanone Ring Systems. Journal of Organic Chemistry, 2002, 67, 5683-5689.	1.7	33
219	Catalytic Asymmetric Benzylic Câ^'H Activation by Means of Carbenoid-Induced Câ^'H Insertions. Journal of Organic Chemistry, 2002, 67, 4165-4169.	1.7	99
220	Catalytic Enantioselective Synthesis of \hat{l}^2 2-Amino Acids This work was supported by the National Science Foundation (CHE 0092490) and the National Institutes of Health (GM57425) Angewandte Chemie, 2002, 114, 2301.	1.6	26
221	Catalytic Enantioselective Synthesis of \hat{l}^2 2-Amino Acids This work was supported by the National Science Foundation (CHE 0092490) and the National Institutes of Health (GM57425) Angewandte Chemie - International Edition, 2002, 41, 2197.	7.2	136
222	Synthesis of iodinated $3\hat{1}^2$ -aryltropanes with selective binding to either the dopamine or serotonin transporters. Bioorganic and Medicinal Chemistry Letters, 2002, 12, 845-847.	1.0	5
223	Catalytic asymmetric Cî—,H activation of sp3 hybridized Cî—,H bonds by means of carbenoid Cî—,H insertions: applications in organic synthesis. Journal of Molecular Catalysis A, 2002, 189, 125-135.	4.8	59
224	Asymmetric synthesis of (+)-indatraline using rhodium-catalyzed C–H activation. Tetrahedron Letters, 2002, 43, 4951-4953.	0.7	73
225	The Reinforcing Efficacy of the Dopamine Reuptake Inhibitor 2β-Propanoyl-3β-(4-tolyl)-tropane (PTT) as Measured by a Progressive-Ratio Schedule and a Choice Procedure in Rhesus Monkeys. Journal of Pharmacology and Experimental Therapeutics, 2002, 303, 640-648.	1.3	38
226	Catalytic enantioselective synthesis of beta3-amino acids. Angewandte Chemie - International Edition, 2002, 41, 2197-9.	7.2	9
227	Kinetic Resolution and Double Stereodifferentiation in Catalytic Asymmetric Câ^'H Activation of 2-Substituted Pyrrolidines. Organic Letters, 2001, 3, 1773-1775.	2.4	50
228	Catalytic Asymmetric Cyclopropanation of Heteroaryldiazoacetates. Journal of Organic Chemistry, 2001, 66, 6595-6603.	1.7	113
229	Catalytic Asymmetric Câ^'H Activation of Silyl Enol Ethers as an Equivalent of an Asymmetric Michael Reaction. Journal of the American Chemical Society, 2001, 123, 2070-2071.	6.6	99
230	Asymmetric Intramolecular Câ^'H Insertions of Aryldiazoacetates. Organic Letters, 2001, 3, 1475-1477.	2.4	114
231	Catalytic Asymmetric Allylic Câ^'H Activation as a Surrogate of the Asymmetric Claisen Rearrangement. Organic Letters, 2001, 3, 3587-3590.	2.4	79
232	Catalytic Asymmetric Synthesis of Highly Functionalized Cyclopentenes by a [3 + 2] Cycloaddition. Journal of the American Chemical Society, 2001, 123, 7461-7462.	6.6	85
233	Synthesis of 2β-Acyl-3β-(substituted naphthyl)-8-azabicyclo[3.2.1]octanes and Their Binding Affinities at Dopamine and Serotonin Transport Sites. Journal of Medicinal Chemistry, 2001, 44, 1509-1515.	2.9	26
234	Catalytic Asymmetric Solid-Phase Cyclopropanation. Journal of the American Chemical Society, 2001, 123, 2695-2696.	6.6	46

#	Article	IF	CITATIONS
235	Diastereoselective Kinetic Protonation of Exocyclic Enolates Derived from Bicyclic Ketones:Â Control of Stereochemistry Mediated by Bridging Heteroatoms. Journal of Organic Chemistry, 2001, 66, 7898-7902.	1.7	17
236	Stereoselective synthesis of epoxides by reaction of donor/acceptor-substituted carbenoids with $\hat{l}\pm,\hat{l}^2$ -unsaturated aldehydes. Tetrahedron Letters, 2001, 42, 6803-6805.	0.7	86
237	Conformational analysis and stereochemical assignments of products derived from Cî—,H activation at secondary sites. Tetrahedron Letters, 2001, 42, 3149-3151.	0.7	18
238	Synthesis and monoamine transporter affinity of $3\hat{l}^2$ -(4-(2-pyrrolyl)phenyl)-8-azabicyclo[3.2.1]octanes and $3\hat{l}^2$ -(5-Indolyl)-8-azabicyclo[3.2.1]octanes. Bioorganic and Medicinal Chemistry Letters, 2001, 11, 487-489.	1.0	8
239	Fluorine-18-labeled tropane analogs for PET imaging studies of the dopamine transporter. Synapse, 2000, 37, 109-117.	0.6	23
240	Effect of Rhodium Carbenoid Structure on Cyclopropanation Chemoselectivity. Tetrahedron, 2000, 56, 4871-4880.	1.0	119
241	Regiochemistry of molybdenum-catalyzed O–H insertions of vinylcarbenoids. Tetrahedron Letters, 2000, 41, 4851-4854.	0.7	29
242	Asymmetric synthesis of 1-alkynylcyclopropane-1-carboxylates. Tetrahedron Letters, 2000, 41, 8189-8192.	0.7	48
243	Dihydro- and tetrahydrofuran ring-opening reactions directed towards the synthesis of CP-263,114. Tetrahedron Letters, 2000, 41, 9021-9024.	0.7	15
244	Effect of carbenoid structure on the reactions of rhodium-stabilized carbenoids with cycloheptatriene. Tetrahedron Letters, 2000, 41, 2035-2038.	0.7	41
245	A comparison of the behavioral effects of the repeated administration of PTT, 2β-propanoyl-3β-(4-tolyl)tropane and cocaine. Brain Research, 2000, 869, 98-104.	1.1	4
246	Self-administration of two long-acting monoamine transport blockers in rhesus monkeys. Psychopharmacology, 2000, 152, 414-421.	1.5	21
247	A cocaine analog, $2\hat{l}^2$ -propanoyl- $3\hat{l}^2$ -(4-tolyl)-tropane (PTT), reduces tyrosine hydroxylase in the mesolimbic dopamine pathway. Drug and Alcohol Dependence, 2000, 61, 15-21.	1.6	3
248	Catalytic Asymmetric Synthesis of Diarylacetates and 4,4-Diarylbutanoates. A Formal Asymmetric Synthesis of (+)-Sertraline. Organic Letters, 2000, 2, 417-417.	2.4	10
249	Catalytic Asymmetric Câ^'H Activation of Alkanes and Tetrahydrofuran. Journal of the American Chemical Society, 2000, 122, 3063-3070.	6.6	345
250	An Exploratory Study of Type II [3 + 4] Cycloadditions between Vinylcarbenoids and Dienes. Journal of Organic Chemistry, 2000, 65, 4261-4268.	1.7	52
251	Asymmetric Catalytic Câ^'H Activation Applied to the Synthesis of Syn-Aldol Products. Organic Letters, 2000, 2, 4153-4156.	2.4	67
252	Stereoselectivity of Methyl Aryldiazoacetate Cyclopropanations of 1,1-Diarylethylene. Asymmetric Synthesis of a Cyclopropyl Analogue of Tamoxifen. Organic Letters, 2000, 2, 823-826.	2.4	54

#	Article	IF	Citations
253	Title is missing!. Journal of Chemical Crystallography, 1999, 29, 707-711.	0.5	1
254	Title is missing!. Journal of Chemical Crystallography, 1999, 29, 713-717.	0.5	2
255	Title is missing!. Journal of Chemical Crystallography, 1999, 29, 1061-1066.	0.5	0
256	Self-administration of cocaine analogs by rats. Psychopharmacology, 1999, 144, 389-397.	1.5	89
257	Dirhodium Tetra(N-arylsulfonylprolinates) as Chiral Catalysts For Asymmetric Transformations of Vinyl- and Aryldiazoacetates. European Journal of Organic Chemistry, 1999, 1999, 2459-2469.	1.2	128
258	Catalytic Asymmetric Synthesis of Diarylacetates and 4,4-Diarylbutanoates. A Formal Asymmetric Synthesis of (+)-Sertraline. Organic Letters, 1999, 1, 233-236.	2.4	137
259	Highly Regio-, Diastereo-, and Enantioselective Câ^'H Insertions of Methyl Aryldiazoacetates into Cyclic N-Boc-Protected Amines. Asymmetric Synthesis of Novel C2-Symmetric Amines and threo-Methylphenidate. Journal of the American Chemical Society, 1999, 121, 6509-6510.	6.6	171
260	Catalytic Asymmetric Synthesis of Syn-Aldol Products from Intermolecular Câ^'H Insertions between Allyl Silyl Ethers and Methyl Aryldiazoacetates. Organic Letters, 1999, 1, 383-386.	2.4	73
261	Enantioselective Synthesis of Fused Cycloheptadienes by a Tandem Intramolecular Cyclopropanation/Cope Rearrangement Sequence. Journal of Organic Chemistry, 1999, 64, 8501-8508.	1.7	60
262	Rhodium(II)-catalyzed decomposition of vinyldiazomethanes in the presence of 1,2-dihydropyridines: Synthesis of the 6-azabicyclo[3.2.2]nonane nucleus. Tetrahedron Letters, 1998, 39, 2707-2710.	0.7	19
263	Further evaluation of the reinforcing effects of the novel cocaine analog $2\hat{l}^2$ -propanoyl-3 \hat{l}^2 -(4-tolyl)-tropane (PTT) in rhesus monkeys. Psychopharmacology, 1998, 136, 139-147.	1.5	20
264	Effect of carbenoid structure on the reactivity of rhodium-stabilized carbenoids. Tetrahedron Letters, 1998, 39, 4417-4420.	0.7	50
265	Cation induced rearrangement of 8-azabicyclo[3.2.1]octa-2,6-dienes to 6-azabicyclo[3.2.1]oct-2-enes. Tetrahedron Letters, 1998, 39, 5943-5946.	0.7	12
266	Effect of catalyst on the diastereoselectivity of methyl phenyldiazoacetate cyclopropanations. Tetrahedron Letters, 1998, 39, 8811-8812.	0.7	37
267	Prolonged dopamine and serotonin transporter inhibition after exposure to tropanes. Neuropharmacology, 1998, 37, 123-130.	2.0	10
268	Asymmetric Synthesis of Cyclopentenes by $[3 + 2]$ Annulations between Vinylcarbenoids and Vinyl Ethers. Journal of Organic Chemistry, 1998, 63, 6586-6589.	1.7	60
269	Total Synthesis of $(\hat{A}\pm)$ -Tremulenolide A and $(\hat{A}\pm)$ -Tremulenediol A via a Stereoselective Cyclopropanation/Cope Rearrangement Annulation Strategy. Journal of Organic Chemistry, 1998, 63, 657-660.	1.7	59
270	Asymmetric Synthesis of 2,3-Dihydrofurans by Reaction of Rhodium-Stabilized Vinylcarbenoids with Vinyl Ethers. Journal of Organic Chemistry, 1998, 63, 2641-2645.	1.7	97

#	Article	IF	Citations
271	Tandem Asymmetric Cyclopropanation/Cope Rearrangement. A Highly Diastereoselective and Enantioselective Method for the Construction of $1,4$ -Cycloheptadienes. Journal of the American Chemical Society, $1998,120,3326$ - $3331.$	6.6	138
272	Rhodium-Stabilized Vinylcarbenoid Intermediates in Organic Synthesis. Current Organic Chemistry, 1998, 2, 463-488.	0.9	47
273	Enantioselective Synthesis of Functionalized Tropanes by Rhodium(II) Carboxylate-Catalyzed Decomposition of Vinyldiazomethanes in the Presence of Pyrroles. Journal of Organic Chemistry, 1997, 62, 1095-1105.	1.7	112
274	Asymmetric Intermolecular Carbenoid Câ^'H Insertions Catalyzed by Rhodium(II) (S)-N-(p-Dodecylphenyl)sulfonylprolinate. Journal of the American Chemical Society, 1997, 119, 9075-9076.	6.6	208
275	Alterations in behavior and opioid gene expression induced by the novel tropane analog WF-31. Molecular Brain Research, 1997, 50, 293-304.	2.5	6
276	Type II intramolecular annulations between vinylcarbenoids and furans. Tetrahedron Letters, 1997, 38, 1737-1740.	0.7	62
277	Rhodium(II) (S)-N-(arylsulfonyl)prolinate catalyzed asymmetric insertions of vinyl- and phenylcarbenoids into the Siî—,H bond. Tetrahedron Letters, 1997, 38, 1741-1744.	0.7	104
278	Local cerebral metabolic effects of the novel cocaine analog, WF-31: Comparisons to fluoxetine. , 1997, 27, 26-35.		8
279	Synthesis of $3\hat{l}^2$ -Aryl-8-azabicyclo[3.2.1]octanes with High Binding Affinities and Selectivities for the Serotonin Transporter Site. Journal of Medicinal Chemistry, 1996, 39, 2554-2558.	2.9	52
280	Asymmetric Cyclopropanations by Rhodium(II)N-(Arylsulfonyl)prolinate Catalyzed Decomposition of Vinyldiazomethanes in the Presence of Alkenes. Practical Enantioselective Synthesis of the Four Stereoisomers of 2-Phenylcyclopropan-1-amino Acid. Journal of the American Chemical Society, 1996, 118, 6897-6907.	6.6	447
281	Asymmetric Synthesis of Highly Functionalized 8-Oxabicyclo[3.2.1]octene Derivatives. Journal of the American Chemical Society, 1996, 118, 10774-10782.	6.6	146
282	Divergent Pathways in the Intramolecular Reactions between Rhodium-Stabilized Vinylcarbenoids and Pyrroles:Â Construction of Fused Tropanes and 7-Azabicyclo[4.2.0]octadienes. Journal of Organic Chemistry, 1996, 61, 2305-2313.	1.7	48
283	Asymmetric synthesis of the tremulane skeleton by a tandem cyclopropanation/cope rearrangement. Tetrahedron Letters, 1996, 37, 3967-3970.	0.7	51
284	Control of carbenoid reactivity through neighboring group participation. Tetrahedron Letters, 1995, 36, 7205-7208.	0.7	13
285	Synthesis and Chemistry of Donor/Acceptor-Substituted Cyclopropenes. Journal of Organic Chemistry, 1995, 60, 7529-7534.	1.7	51
286	Synthesis of highly functionalized tropolones by rhodium(II)-catalyzed reactions of vinyldiazomethanes with oxygenated dienes. Tetrahedron, 1994, 50, 9883-9892.	1.0	32
287	Rhodium(II) catalyzed intramolecular reactions between vinyldiazomethanes and pyrroles. Novel synthesis of fused 7-azabicyclo[4.2.0]octadienes. Tetrahedron Letters, 1994, 35, 5209-5212.	0.7	17
288	Asymmetric synthesis of 1,4-cycloheptadienes and bicyclo[3.2.1]octa-2,6-dienes by rhodium(II) N-(p-(tert-butyl)phenylsulfonyl)prolinate catalyzed reactions between vinyldiazomethanes and dienes. Tetrahedron Letters, 1994, 35, 8939-8942.	0.7	63

#	Article	IF	CITATIONS
289	Carbenoid versus Vinylogous Reactivity in Rhodium(II)-Stabilized Vinylcarbenoids. Journal of Organic Chemistry, 1994, 59, 4535-4541.	1.7	89
290	Behavioral effects of the novel tropane analog, 2β-propanoyl-3β-(4-toluyl)-tropane (PTT). Life Sciences, 1994, 54, PL511-PL517.	2.0	17
291	Synthesis of 2.betaAcyl-3.betaaryl-8-azabicyclo[3.2.1]octanes and Their Binding Affinities at Dopamine and Serotonin Transport Sites in Rat Striatum and Frontal Cortex. Journal of Medicinal Chemistry, 1994, 37, 1262-1268.	2.9	95
292	Tandem cyclopropanation/cope rearrangement: a general method for the construction of seven-membered rings. Tetrahedron, 1993, 49, 5203-5223.	1.0	209
293	Enantioselective synthesis of vinylcyclopropanes by rhodium(II) catalyzed decomposition of vinyldiazomethanes in the presence of alkenes. Tetrahedron Letters, 1993, 34, 7243-7246.	0.7	121
294	Novel 2-substituted cocaine analogs: binding properties at dopamine transport sites in rat striatum. European Journal of Pharmacology, 1993, 244, 93-97.	2.7	45
295	alphaHydroxy esters as chiral auxiliaries in asymmetric cyclopropanations by rhodium(II)-stabilized vinylcarbenoids. Journal of the American Chemical Society, 1993, 115, 9468-9479.	6.6	132
296	Diastereoselectivity Enhancement in Cyclopropanation and Cyclopropenation Reactions of Chiral Diazoacetate Esters Catalyzed by Chiral Dirhodium(II) Carboxamides. Synlett, 1993, 1993, 151-153.	1.0	38
297	Synthesis of Ether Analogues of (±)-Acetomycin. Heterocycles, 1993, 35, 385.	0.4	16
298	Convenient Synthesis of Vinyldiazomethanes from \hat{l}_{\pm} -Diazo- \hat{l}^2 -Keto Esters and Related Systems. Synthetic Communications, 1992, 22, 971-978.	1.1	31
299	Highly stereoselective $[3 + 2]$ annulations by cyclopropanation of vinyl ethers with rhodium(II)-stabilized vinylcarbenoids followed by a formally forbidden 1,3-sigmatropic rearrangement. Journal of Organic Chemistry, 1992, 57, 3186-3190.	1.7	57
300	Ring expansion of tert-butyl 1-vinylcyclopropane-1-carboxylates to .alphaethylidenebutyrolactones. Journal of Organic Chemistry, 1992, 57, 4309-4312.	1.7	31
301	Divergent reaction pathways between rhodium(II)-stabilized vinylcarbenoids and benzenes. Journal of Organic Chemistry, 1992, 57, 6900-6903.	1.7	26
302	Enantioselective synthesis of tropanes by reaction of rhodium-stabilized vinylcarbenoids with pyrroles. Tetrahedron Letters, 1992, 33, 6935-6938.	0.7	45
303	Regioselective [3 + 2] annulations with rhodium(ii)-stabilized vinylcarbenoids. Tetrahedron Letters, 1992, 33, 455-456.	0.7	12
304	Stereoselective convergent synthesis of hydroazulenes via an intermolecular cyclopropanation/Cope rearrangement. Journal of Organic Chemistry, 1991, 56, 723-727.	1.7	43
305	Stereoselective synthesis of seven-membered carbocycles by a tandem cyclopropanation/Cope rearrangement between rhodium(II)-stabilized vinylcarbenoids and dienes. Journal of Organic Chemistry, 1991, 56, 3817-3824.	1.7	106
306	\hat{l}_{\pm} -hydroxy esters as inexpensive chiral auxiliaries in rhodium(II)-catalyzed cyclopropanations with vinyldiazomethanes. Tetrahedron Letters, 1991, 32, 6509-6512.	0.7	62

#	Article	IF	CITATIONS
307	Synthesis of (.+)-ferruginine and (.+)-anhydroecgonine methyl-ester by a tandem cyclopropanation/Cope rearrangement. Journal of Organic Chemistry, 1991, 56, 5696-5700.	1.7	140
308	Versatile synthesis of tropones by reaction of rhodium(II)-stabilized vinylcarbenoids with 1-methoxy-1-[(trimethylsilyl)oxy]buta-1,3-diene. Journal of Organic Chemistry, 1991, 56, 6440-6447.	1.7	54
309	Anomalous reactivity of mono substituted rhodium stabilized vinylcarbenoids. Tetrahedron Letters, 1990, 31, 6299-6302.	0.7	67
310	Novel entry to the tropane system by reaction of rhodium(II) acetate stabilized vinylcarbenoids with pyrroles. Tetrahedron Letters, 1989, 30, 4653-4656.	0.7	47
311	Scope and stereochemistry of the tandem intramolecular cyclopropanation/Cope rearrangement sequence. Journal of Organic Chemistry, 1989, 54, 930-936.	1.7	76
312	Novel approach to seven-membered rings by the intramolecular tandem cyclopropanation/cope rearrangement sequence. Tetrahedron Letters, 1988, 29, 975-978.	0.7	32
313	Synthesis and pyrolysis of cyclic sulfonium ylides. Tetrahedron Letters, 1987, 28, 371-374.	0.7	33
314	Diazotransfer Reactions with $\langle i \rangle p \langle j \rangle$ -Acetamidobenzenesulfonyl Azide. Synthetic Communications, 1987, 17, 1709-1716.	1.1	192
315	Mechanistic aspects of formal [3 + 4] cycloadditions between vinylcarbenoids and furans. Tetrahedron, 1987, 43, 4265-4270.	1.0	75
316	Synthesis of fused 1,2-diazetidinones via an intramolecular Horner-Emmons reaction. Journal of Organic Chemistry, 1986, 51, 1537-1540.	1.7	37
317	Synthesis and reactions of some 1,2-disubstituted 1,2-diazetidin-3-ones: an intramolecular aldol approach to bicyclic systems. Journal of Organic Chemistry, 1986, 51, 1530-1536.	1.7	22
318	Thallium in Organic Synthesis. 67 Intramolecular Capture of Aromatic Radical Cations by An N-Tosyl Group. Synthetic Communications, 1986, 16, 267-281.	1.1	7
319	[3 + 4] Cycloaddition reactions of vinyl carbenoids with furans. Tetrahedron Letters, 1985, 26, 5659-5662.	0.7	64
320	Approaches to the synthesis of aza analogs of the .betalactam antibiotics: some anomalous rhodium(II)-catalyzed carbene insertion reactions. Journal of Organic Chemistry, 1984, 49, 113-116.	1.7	27
321	Synthesis and reactions of some 1-substituted 1,2-diazetidinones. Journal of Organic Chemistry, 1984, 49, 4415-4419.	1.7	15
322	N- vs. O-acylation of 4,5-dihydro-1,3-oxadiazin-6-ones by ring enlargement. Journal of Organic Chemistry, 1984, 49, 2204-2208.	1.7	21
323	Rhodium(II) acetate-catalyzed reaction of ethyl 2-diazo-3-oxopent-4-enoates: Simple routes to 4-aryl-2-hydroxy-1-naphthoates and \hat{l}^2 , \hat{l}^2 -unsaturated esters. The dianion of ethyl 4-(diethylphosphono)acetoacetate as a propionate homoenolate equivalent. Tetrahedron Letters, 1983, 24, 5453-5456.	0.7	50
324	Synthesis of cyclic azomethine imines from aza .betalactams. Conversion of 3-oxo-1,2-diazetidinium tosylates into 1-substituted 3-oxo-1,2-diazetidinium inner salts. Journal of Organic Chemistry, 1983, 48, 4567-4571.	1.7	16

#	Article	IF	CITATIONS
325	Formation of monocyclic and bicyclic azabetalactams and other novel heterocycles from 1-(diphenylmethylene)-3-oxo-1,2-diazetidinium inner salt. Journal of the American Chemical Society, 1981, 103, 7659-7660.	6.6	31
326	3-Oxo-1,2-diazetidinium tosylate. Journal of the American Chemical Society, 1981, 103, 7660-7661.	6.6	23