Xiaowei Wang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6004902/publications.pdf

Version: 2024-02-01

172457 345221 3,185 36 29 36 citations h-index g-index papers 36 36 36 4519 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Boron Nitrideâ€Based Release Agent Coating Stabilizes Li _{1.3} Al _{0.3} Ti _{1.7} (PO ₄) ₃ /Li Interface with Superior Leanâ€Lithium Electrochemical Performance and Thermal Stability. Advanced Functional Materials, 2022, 32, .	14.9	27
2	Recent advances in black-phosphorus-based materials for electrochemical energy storage. Materials Today, 2021, 42, 117-136.	14.2	125
3	A Highâ€Performance Lithium Metal Battery with Ionâ€Selective Nanofluidic Transport in a Conjugated Microporous Polymer Protective Layer. Advanced Materials, 2021, 33, e2006323.	21.0	64
4	From Micropores to Ultra-micropores inside Hard Carbon: Toward Enhanced Capacity in Room-/Low-Temperature Sodium-Ion Storage. Nano-Micro Letters, 2021, 13, 98.	27.0	78
5	Denseâ€Stacking Porous Conjugated Polymer as Reactiveâ€Type Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie, 2021, 133, 11460-11470.	2.0	11
6	Para-Substituted Triphenylamine as a Catholyte for Zinc–Organic Aqueous Redox Flow Batteries. ACS Applied Energy Materials, 2021, 4, 3612-3621.	5.1	18
7	Denseâ€Stacking Porous Conjugated Polymer as Reactiveâ€Type Host for Highâ€Performance Lithium Sulfur Batteries. Angewandte Chemie - International Edition, 2021, 60, 11359-11369.	13.8	62
8	Solution-Processable Covalent Organic Framework Electrolytes for All-Solid-State Li–Organic Batteries. ACS Energy Letters, 2020, 5, 3498-3506.	17.4	114
9	Stabilizing a Lithium Metal Battery by an In Situ Li ₂ S-modified Interfacial Layer via Amorphous-Sulfide Composite Solid Electrolyte. Nano Letters, 2020, 20, 8273-8281.	9.1	47
10	Site-selective alkene borylation enabled by synergistic hydrometallation and borometallation. Nature Catalysis, 2020, 3, 585-592.	34.4	60
11	Covalentâ€Organicâ€Frameworkâ€Based Li–CO ₂ Batteries. Advanced Materials, 2019, 31, e19058	8 29. 0	129
12	Single-Atom Coated Separator for Robust Lithium–Sulfur Batteries. ACS Applied Materials & Samp; Interfaces, 2019, 11, 25147-25154.	8.0	152
13	Two-Dimensional Polymer Synthesized <i>via</i> Solid-State Polymerization for High-Performance Supercapacitors. ACS Nano, 2018, 12, 852-860.	14.6	91
14	Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery. Advanced Materials, 2018, 30, e1801745.	21.0	163
15	Enhancing performance of sandwich-like cobalt sulfide and carbon for quasi-solid-state hybrid electrochemical capacitors. Journal of Materials Chemistry A, 2017, 5, 8981-8988.	10.3	32
16	Unveiling the role of Co-O-Mg bond in magnetic anisotropy of <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi>Pt</mml:mi><mml:mo>/</mml:mo> using atomically controlled deposition and <i>in situ</i> electrical measurement. Physical Review B, 2017, 95, .</mml:mrow></mml:math>	- smml:mi:	>Ço
17	An Aqueous Rechargeable Zn//Co ₃ O ₄ Battery with High Energy Density and Good Cycling Behavior. Advanced Materials, 2016, 28, 4904-4911.	21.0	417
18	Aqueous Rechargeable Zinc/Aluminum Ion Battery with Good Cycling Performance. ACS Applied Materials & Samp; Interfaces, 2016, 8, 9022-9029.	8.0	111

#	Article	IF	Citations
19	Electrode materials with tailored facets for electrochemical energy storage. Nanoscale Horizons, 2016, 1, 272-289.	8.0	98
20	A conductive polymer coated MoO ₃ anode enables an Al-ion capacitor with high performance. Journal of Materials Chemistry A, 2016, 4, 5115-5123.	10.3	120
21	Enhanced capacitive desalination of MnO ₂ by forming composite with multi-walled carbon nanotubes. RSC Advances, 2016, 6, 6730-6736.	3.6	59
22	A Quasiâ€Solidâ€State Sodiumâ€Ion Capacitor with High Energy Density. Advanced Materials, 2015, 27, 6962-6968.	21.0	177
23	Composites of porous Co ₃ O ₄ grown on Li ₂ MnO ₃ microspheres as cathode materials for lithium ion batteries. Journal of Materials Chemistry A, 2015, 3, 4840-4845.	10.3	45
24	Co ₃ O ₄ @MWCNT Nanocable as Cathode with Superior Electrochemical Performance for Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2015, 7, 2280-2285.	8.0	162
25	Hybrid system for rechargeable magnesium battery with high energy density. Scientific Reports, 2015, 5, 11931.	3.3	48
26	Orientated Co ₃ O ₄ Nanocrystals on MWCNTs as Superior Battery-Type Positive Electrode Material for a Hybrid Capacitor. Journal of the Electrochemical Society, 2015, 162, A1966-A1971.	2.9	52
27	A gel polymer electrolyte based on composite of nonwoven fabric and methyl cellulose with good performance for lithium ion batteries. RSC Advances, 2015, 5, 52382-52387.	3.6	44
28	A Zn–NiO rechargeable battery with long lifespan and high energy density. Journal of Materials Chemistry A, 2015, 3, 8280-8283.	10.3	141
29	Aqueous Rechargeable Battery Based on Zinc and a Composite of LiNi _{1/3} Co _{1/3} Mn _{1/3} O ₂ . ChemElectroChem, 2015, 2, 1024-1030.	3.4	58
30	Janus Solid–Liquid Interface Enabling Ultrahigh Charging and Discharging Rate for Advanced Lithium-Ion Batteries. Nano Letters, 2015, 15, 6102-6109.	9.1	90
31	A dense cellulose-based membrane as a renewable host for gel polymer electrolyte of lithium ion batteries. Journal of Membrane Science, 2015, 476, 112-118.	8.2	164
32	Na _{0.35} MnO ₂ /CNT Nanocomposite from a Hydrothermal Method as Electrode Material for Aqueous Supercapacitors. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2014, 640, 2908-2913.	1.2	5
33	A hybrid of CoOOH nanorods with carbon nanotubes as a superior positive electrode material for supercapacitors. RSC Advances, 2014, 4, 59088-59093.	3.6	17
34	Green energy storage chemistries based on neutral aqueous electrolytes. Journal of Materials Chemistry A, 2014, 2, 10739-10755.	10.3	113
35	A Se/C composite as cathode material for rechargeable lithium batteries with good electrochemical performance. RSC Advances, 2014, 4, 9086-9091.	3.6	59
36	An acid-free rechargeable battery based on PbSO ₄ and spinel LiMn ₂ O ₄ . Chemical Communications, 2014, 50, 13714-13717.	4.1	21

3