Dirk Westermann

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6004686/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiac SARS-CoV-2 infection is associated with pro-inflammatory transcriptomic alterations within the heart. Cardiovascular Research, 2022, 118, 542-555.	1.8	42
2	Performance of the European Society of Cardiology 0/1-Hour, 0/2-Hour, and 0/3-Hour Algorithms for Rapid Triage of Acute Myocardial Infarction. Annals of Internal Medicine, 2022, 175, 101-113.	2.0	37
3	High-sensitivity cardiac troponin I after coronary artery bypass grafting for post-operative decision-making. European Heart Journal, 2022, 43, 2388-2403.	1.0	23
4	Risk prediction in patients with low-flow, low-gradient aortic stenosis and reduced ejection fraction undergoing TAVI. Open Heart, 2022, 9, e001912.	0.9	4
5	Intracranial haemorrhage in adult patients on venoarterial extracorporeal membrane oxygenation. European Heart Journal: Acute Cardiovascular Care, 2022, 11, 303-311.	0.4	4
6	Early risk stratification in patients with cardiogenic shock irrespective of the underlying cause–Âthe Cardiogenic Shock Score. European Journal of Heart Failure, 2022, 24, 657-667.	2.9	26
7	Molecular consequences of SARS-CoV-2 liver tropism. Nature Metabolism, 2022, 4, 310-319.	5.1	98
8	Single-dose of adrecizumab versus placebo in acute cardiogenic shock (ACCOST-HH): an investigator-initiated, randomised, double-blinded, placebo-controlled, multicentre trial. Lancet Respiratory Medicine,the, 2022, 10, 247-254.	5.2	12
9	Percutaneous Transvalvular Microaxial Flow Pump Support in Cardiology. Circulation, 2022, 145, 1254-1284.	1.6	29
10	Extracorporeal membrane oxygenation. Deutsches Ärzteblatt International, 2022, , .	0.6	5
11	Establishing a robotic-assisted PCI program: experiences at a large tertiary referral center. Heart and Vessels, 2022, 37, 1669-1678.	0.5	3
12	Anticoagulation for Percutaneous Ventricular Assist Device-Supported Cardiogenic Shock. Journal of the American College of Cardiology, 2022, 79, 1949-1962.	1.2	36
13	Association Between the Acidemia, Lactic Acidosis, and Shock Severity With Outcomes in Patients With Cardiogenic Shock. Journal of the American Heart Association, 2022, 11, e024932.	1.6	15
14	Human cardiac organoids to model COVIDâ€19 cytokine storm induced cardiac injuries. Journal of Tissue Engineering and Regenerative Medicine, 2022, 16, 799-811.	1.3	15
15	Lower socioeconomic status predicts higher mortality and morbidity in patients with heart failure. Heart, 2021, 107, 229-236.	1.2	26
16	Effects of COVID-19 on in-hospital cardiac arrest: incidence, causes, and outcome – a retrospective cohort study. Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine, 2021, 29, 30.	1.1	28
17	Health-related quality of life 1–3 years post-myocardial infarction: its impact on prognosis. Open Heart, 2021, 8, e001499.	0.9	18
18	Temporal trends in incidence, causes, use of mechanical circulatory support and mortality in cardiogenic shock. ESC Heart Failure, 2021, 8, 1295-1303.	1.4	69

#	Article	IF	CITATIONS
19	Sex differences in patients with cardiogenic shock. ESC Heart Failure, 2021, 8, 1775-1783.	1.4	17
20	cAMP Imaging at Ryanodine Receptors Reveals β ₂ -Adrenoceptor Driven Arrhythmias. Circulation Research, 2021, 129, 81-94.	2.0	28
21	Characteristics and Risk Factors for Intensive Care Unit Cardiac Arrest in Critically Ill Patients with COVID-19—A Retrospective Study. Journal of Clinical Medicine, 2021, 10, 2195.	1.0	1
22	Response by Schrage and Westermann to Letters Regarding Article, "Left Ventricular Unloading Is Associated With Lower Mortality in Patients With Cardiogenic Shock Treated With Venoarterial Extracorporeal Membrane Oxygenation: Results From an International, Multicenter Cohort Studyâ€ . Circulation, 2021, 143, e1024.	1.6	10
23	Prevention of coronary obstruction in patients at risk undergoing transcatheter aortic valve implantation: the Hamburg BASILICA experience. Clinical Research in Cardiology, 2021, 110, 1900-1911.	1.5	11
24	Eligibility for mechanical circulatory support devices based on current and past randomised cardiogenic shock trials. European Journal of Heart Failure, 2021, 23, 1942-1951.	2.9	25
25	The association of anaemia and high-sensitivity cardiac troponin and its effect on diagnosing myocardial infarction. European Heart Journal: Acute Cardiovascular Care, 2021, , .	0.4	7
26	Seasonal trends of incidence and outcomes of cardiogenic shock : findings from a large, nationwide inpatients sample with 441,696 cases. Critical Care, 2021, 25, 325.	2.5	1
27	Influence of age and shock severity on short-term survival in patients with cardiogenic shock. European Heart Journal: Acute Cardiovascular Care, 2021, 10, 604-612.	0.4	45
28	Extracorporeal Membrane Oxygenation Evolution: LV Unloading Strategies. JTCVS Open, 2021, , .	0.2	0
29	Determinants of long-term dual antiplatelet therapy use in post myocardial infarction patients: Insights from the TIGRIS registry. Journal of Cardiology, 2021, , .	0.8	2
30	Atrial fibrillation and clinical outcomes 1 to 3 years after myocardial infarction. Open Heart, 2021, 8, e001726.	0.9	5
31	Predicting risk of cardiovascular events 1 to 3 years postâ€myocardial infarction using a global registry. Clinical Cardiology, 2020, 43, 24-32.	0.7	18
32	Risk prediction of in-hospital mortality in patients with venoarterial extracorporeal membrane oxygenation for cardiopulmonary support: The ECMO-ACCEPTS score. Journal of Critical Care, 2020, 56, 100-105.	1.0	27
33	Performance of the ESC 0/1-h and 0/3-h Algorithm for the Rapid Identification of Myocardial Infarction Without ST-Elevation in Patients With Diabetes. Diabetes Care, 2020, 43, 460-467.	4.3	18
34	Association of high-sensitivity troponin T and I with the severity of stable coronary artery disease in patients with chronic kidney disease. Atherosclerosis, 2020, 313, 81-87.	0.4	6
35	Epidemiology of intensive care unit cardiac arrest: Characteristics, comorbidities, and post-cardiac arrest organ failure — A prospective observational study. Resuscitation, 2020, 156, 92-98.	1.3	16
36	Left Ventricular Unloading Is Associated With Lower Mortality in Patients With Cardiogenic Shock Treated With Venoarterial Extracorporeal Membrane Oxygenation. Circulation, 2020, 142, 2095-2106.	1.6	269

#	Article	IF	CITATIONS
37	Association of Cardiac Infection With SARS-CoV-2 in Confirmed COVID-19 Autopsy Cases. JAMA Cardiology, 2020, 5, 1281.	3.0	644
38	Prevention and treatment of pulmonary congestion in patients undergoing venoarterial extracorporeal membrane oxygenation for cardiogenic shock. European Heart Journal, 2020, 41, 3753-3761.	1.0	48
39	Diabetes association with selfâ€reported health, resource utilization, and prognosis postâ€myocardial infarction. Clinical Cardiology, 2020, 43, 1352-1361.	0.7	3
40	TAVR for low-flow, low-gradient aortic stenosis: Prognostic impact of aortic valve calcification. American Heart Journal, 2020, 225, 138-148.	1.2	11
41	Application of a machine learning-driven, multibiomarker panel for prediction of incident cardiovascular events in patients with suspected myocardial infarction. Biomarkers in Medicine, 2020, 14, 775-784.	0.6	5
42	Procedural volume and outcomes in patients undergoing VA-ECMO support. Critical Care, 2020, 24, 291.	2.5	32
43	High-Sensitivity Cardiac Troponin I Levels and Prediction of HeartÂFailure. JACC: Heart Failure, 2020, 8, 401-411.	1.9	26
44	Temporal trends in incidence and outcome of acute coronary syndrome. Clinical Research in Cardiology, 2020, 109, 1186-1192.	1.5	54
45	Detailed interpretation of ECMO-ACCEPTS score. Journal of Critical Care, 2020, 60, 327.	1.0	0
46	Two-year outcomes among stable high-risk patients following acute MI. Insights from a global registry in 25 countries. International Journal of Cardiology, 2020, 311, 7-14.	0.8	9
47	Bridging INTERMACS 1 patients from VA-ECMO to LVAD via Impella 5.0: De-escalate and ambulate. Journal of Critical Care, 2020, 57, 259-263.	1.0	47
48	Application of the SCAI classification in a cohort of patients with cardiogenic shock. Catheterization and Cardiovascular Interventions, 2020, 96, E213-E219.	0.7	122
49	Mitral stenosis and atrial fibrillation. Heart, 2020, 106, 713-713.	1.2	4
50	Patient Characteristics, Treatment and Outcome in Non-Ischemic vs. Ischemic Cardiogenic Shock. Journal of Clinical Medicine, 2020, 9, 931.	1.0	28
51	Switching to Impella 5.0 decreases need for transfusion in patients undergoing temporary mechanical circulatory support. Journal of Critical Care, 2020, 57, 253-258.	1.0	13
52	Hemodynamic Effects of Mechanical Circulatory Support Devices in Ventricular Septal Defect. Circulation: Heart Failure, 2019, 12, e005981.	1.6	62
53	Application of High-Sensitivity Troponin in Suspected Myocardial Infarction. New England Journal of Medicine, 2019, 380, 2529-2540.	13.9	230
54	Diagnostic Evaluation of a High-Sensitivity Troponin I Point-of-Care Assay. Clinical Chemistry, 2019, 65, 1592-1601.	1.5	56

#	Article	IF	CITATIONS
55	Neuron-specific-enolase as a predictor of the neurologic outcome after cardiopulmonary resuscitation in patients on ECMO. Resuscitation, 2019, 136, 14-20.	1.3	33
56	Association Between Use of Primary-Prevention Implantable Cardioverter-Defibrillators and Mortality in Patients With Heart Failure. Circulation, 2019, 140, 1530-1539.	1.6	78
57	Prognostic Value of a Novel and Established High-Sensitivity Troponin I Assay in Patients Presenting with Suspected Myocardial Infarction. Biomolecules, 2019, 9, 469.	1.8	12
58	Macrophage Migration Inhibitory Factor (MIF) Expression Increases during Myocardial Infarction and Supports Pro-Inflammatory Signaling in Cardiac Fibroblasts. Biomolecules, 2019, 9, 38.	1.8	20
59	Comparative Analysis of Circulating Noncoding RNAs Versus Protein Biomarkers in the Detection of Myocardial Injury. Circulation Research, 2019, 125, 328-340.	2.0	86
60	Cardiac glial cells release neurotrophic S100B upon catheter-based treatment of atrial fibrillation. Science Translational Medicine, 2019, 11, .	5.8	57
61	Relative Telomere Length and Cardiovascular Risk Factors. Biomolecules, 2019, 9, 192.	1.8	17
62	Predictive value of soluble urokinase-type plasminogen activator receptor for mortality in patients with suspected myocardial infarction. Clinical Research in Cardiology, 2019, 108, 1386-1393.	1.5	10
63	Impella 5.0 therapy as a bridge-to-decision option for patients on extracorporeal life support with unclear neurological outcomes. European Journal of Cardio-thoracic Surgery, 2019, 56, 1031-1036.	0.6	27
64	Diagnostic Value of Soluble Urokinase-Type Plasminogen Activator Receptor in Addition to High-Sensitivity Troponin I in Early Diagnosis of Acute Myocardial Infarction. Biomolecules, 2019, 9, 108.	1.8	8
65	Reply. JACC: Heart Failure, 2019, 7, 364-365.	1.9	2
66	Mechanical circulatory support devices in cardiogenic shock and acute heart failure: current evidence. Current Opinion in Critical Care, 2019, 25, 391-396.	1.6	19
67	Impella Support for Acute Myocardial Infarction Complicated by Cardiogenic Shock. Circulation, 2019, 139, 1249-1258.	1.6	353
68	Evaluation of a new ultra-sensitivity troponin I assay in patients with suspected myocardial infarction. International Journal of Cardiology, 2019, 283, 35-40.	0.8	19
69	Distinct Hemodynamic Changes After Interventional Mitral Valve Edgeâ€ŧoâ€₤dge Repair in Different Phenotypes of Heart Failure: An Integrated Hemodynamic Analysis. Journal of the American Heart Association, 2018, 7, .	1.6	7
70	Indication and short-term clinical outcomes of high-risk percutaneous coronary intervention with microaxial Impella® pump: results from the German Impella® registry. Clinical Research in Cardiology, 2018, 107, 653-657.	1.5	30
71	Deâ€escalation of support with venoâ€arterial extracorporeal membrane oxygenation and Impella for cardiogenic shock: reply. European Journal of Heart Failure, 2018, 20, 622-623.	2.9	0
72	Unloading of the Left Ventricle During Venoarterial Extracorporeal Membrane Oxygenation Therapy in CardiogenicÂShock. JACC: Heart Failure, 2018, 6, 1035-1043.	1.9	105

#	Article	IF	CITATIONS
73	Venoarterial Extracorporeal Membrane Oxygenation for Cardiopulmonary Support. Circulation, 2018, 138, 2298-2300.	1.6	92
74	More evidence for high-sensitivity troponin assays. Heart, 2018, 105, heartjnl-2018-314280.	1.2	1
75	Reply. Journal of the American College of Cardiology, 2018, 72, 2941.	1.2	Ο
76	Precursor proadrenomedullin influences cardiomyocyte survival and local inflammation related to myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E8727-E8736.	3.3	25
77	Prospective Validation of the 0/1-h Algorithm for Early Diagnosis of Myocardial Infarction. Journal of the American College of Cardiology, 2018, 72, 620-632.	1.2	147
78	Adverse Outcome Prediction of Iron Deficiency in Patients with Acute Coronary Syndrome. Biomolecules, 2018, 8, 60.	1.8	39
79	Diagnosing myocardial infarction: a highly sensitive issue. Lancet, The, 2018, 392, 893-894.	6.3	5
80	Predictors of leptin concentration and association with cardiovascular risk in patients with coronary artery disease: results from the Athero <i>Gene</i> study. Biomarkers, 2017, 22, 210-218.	0.9	16
81	Challenging the 99th percentile: A lower troponin cutoff leads to low mortality of chest pain patients. International Journal of Cardiology, 2017, 232, 289-293.	0.8	27
82	High-sensitivity assays for troponin in patients with cardiac disease. Nature Reviews Cardiology, 2017, 14, 472-483.	6.1	144
83	Immediate Rule-Out of Acute Myocardial Infarction Using Electrocardiogram and Baseline High-Sensitivity Troponin I. Clinical Chemistry, 2017, 63, 394-402.	1.5	57
84	Discrimination of patients with type 2 myocardial infarction. European Heart Journal, 2017, 38, 3514-3520.	1.0	96
85	Association of High-Sensitivity Cardiac Troponin I Concentration With Cardiac Outcomes in Patients With Suspected Acute Coronary Syndrome. JAMA - Journal of the American Medical Association, 2017, 318, 1913.	3.8	188
86	Biomarkers for characterization of heart failure – Distinction of heart failure with preserved and reduced ejection fraction. International Journal of Cardiology, 2017, 227, 272-277.	0.8	49
87	Concomitant implantation of Impella [®] on top of venoâ€arterial extracorporeal membrane oxygenation may improve survival of patients with cardiogenic shock. European Journal of Heart Failure, 2017, 19, 404-412.	2.9	402
88	Rationale and design of the longâ€Term rIsk, clinical manaGement, and healthcare Resource utilization of stable coronary artery dlSease in post–myocardial infarction patients (TIGRIS) study. Clinical Cardiology, 2017, 40, 1197-1204.	0.7	12
89	Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis. Journal of Immunology Research, 2017, 2017, 1-17.	0.9	19
90	Early diagnosis of acute myocardial infarction using high-sensitivity troponin I. PLoS ONE, 2017, 12, e0174288.	1.1	29

#	Article	IF	CITATIONS
91	SYNTAX score-0 patients: risk stratification in nonobstructive coronary artery disease. Clinical Research in Cardiology, 2016, 105, 901-911.	1.5	13
92	Cardiovascular Mortality in Chest Pain Patients: Comparison of Natriuretic Peptides With Novel Biomarkers of Cardiovascular Stress. Canadian Journal of Cardiology, 2016, 32, 1470-1477.	0.8	2
93	Risk factors for heart failure are associated with alterations of the LV end-diastolic pressure–volume relationship in non-heart failure individuals: data from a large-scale, population-based cohort. European Heart Journal, 2016, 37, 1807-1814.	1.0	41
94	Diagnosis of Myocardial Infarction Using a High-Sensitivity Troponin I 1-Hour Algorithm. JAMA Cardiology, 2016, 1, 397.	3.0	186
95	Radiation exposure during the implantation of bioabsorbable vascular scaffolds versus drug-eluting stents in non-complex coronary lesions: a matched-cohort study. Minerva Cardiology and Angiology, 2016, 65, 1-7.	0.4	1
96	Risk Factors of Coronary Artery Disease in Secondary Prevention—Results from the AtheroGene—Study. PLoS ONE, 2015, 10, e0131434.	1.1	26
97	Activity of superoxide dismutase copper/zinc type and prognosis in a cohort of patients with coronary artery disease. Biomarkers in Medicine, 2015, 9, 597-604.	0.6	11
98	The utility of pregnancy-associated plasma protein A for determination of prognosis in a cohort of patients with coronary artery disease. Biomarkers in Medicine, 2015, 9, 731-741.	0.6	10
99	Cardiac Fibroblasts Aggravate Viral Myocarditis: Cell Specific Coxsackievirus B3 Replication. Mediators of Inflammation, 2014, 2014, 1-14.	1.4	37
100	Cardiac fibroblasts support cardiac inflammation in heart failure. Basic Research in Cardiology, 2014, 109, 428.	2.5	128
101	Osteoglycin (OGN) modulates inflammation during viral myocarditis via an interaction with Toll Like Receptor 4 FASEB Journal, 2013, 27, 829.1.	0.2	0
102	Selective PDE5A inhibition with sildenafil rescues left ventricular dysfunction, inflammatory immune response and cardiac remodeling in angiotensin II-induced heart failure in vivo. Basic Research in Cardiology, 2012, 107, 308.	2.5	66
103	The matricellular proteins thrombospondinâ€2, osteonectin and osteoglycin modulate cardiac inflammation, injury and function during viral myocarditis FASEB Journal, 2012, 26, 1060.6.	0.2	0
104	Reduced Degradation of the Chemokine MCP-3 by Matrix Metalloproteinase-2 Exacerbates Myocardial Inflammation in Experimental Viral Cardiomyopathy. Circulation, 2011, 124, 2082-2093.	1.6	81
105	Cardiac Inflammation Contributes to Changes in the Extracellular Matrix in Patients With Heart Failure and Normal Ejection Fraction. Circulation: Heart Failure, 2011, 4, 44-52.	1.6	493
106	Immunomodulation and matrix metalloproteinases in viral myocarditis. Journal of Molecular and Cellular Cardiology, 2010, 48, 468-473.	0.9	48
107	Gene Deletion of the Kinin Receptor B1 Attenuates Cardiac Inflammation and Fibrosis During the Development of Experimental Diabetic Cardiomyopathy. Diabetes, 2009, 58, 1373-1381.	0.3	102
108	Enhancement of the endothelial NO synthase attenuates experimental diastolic heart failure. Basic Research in Cardiology, 2009, 104, 499-509.	2.5	63

#	Article	IF	CITATIONS
109	Renin inhibitors, clinical experience. Journal of Molecular Medicine, 2008, 86, 691-695.	1.7	19
110	New perspective on the tissue kallikrein–kinin system in myocardial infarction: Role of angiogenesis and cardiac regeneration. International Immunopharmacology, 2008, 8, 148-154.	1.7	26
111	Doxorubicin cardiomyopathy-induced inflammation and apoptosis are attenuated by gene deletion of the kinin B1 receptor. Biological Chemistry, 2008, 389, 713-718.	1.2	22
112	Role of Left Ventricular Stiffness in Heart Failure With Normal Ejection Fraction. Circulation, 2008, 117, 2051-2060.	1.6	403
113	Renin Inhibition Improves Cardiac Function and Remodeling After Myocardial Infarction Independent of Blood Pressure. Hypertension, 2008, 52, 1068-1075.	1.3	91
114	Cardioprotective and Anti-Inflammatory Effects of Interleukin Converting Enzyme Inhibition in Experimental Diabetic Cardiomyopathy. Diabetes, 2007, 56, 1834-1841.	0.3	121
115	Tumor necrosis factor-alpha antagonism protects from myocardial inflammation and fibrosis in experimental diabetic cardiomyopathy. Basic Research in Cardiology, 2007, 102, 500-507.	2.5	180