List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6003710/publications.pdf Version: 2024-02-01

MESEIN TSICE

#	Article	IF	CITATIONS
1	Adsorption of Benzoic Acid: Structural Organization on the Surfaces of Pristine and Functionalized Single-Walled Carbon Nanotubes. ACS ES&T Water, 2021, 1, 251-258.	4.6	2
2	Understanding the origin of structure sensitivity in hydrodechlorination of trichloroethylene on a palladium catalyst. Reaction Chemistry and Engineering, 2021, 6, 2270-2279.	3.7	3
3	Cooperative Multivalent Weak and Strong Interfacial Interactions Enhance the Adhesion of Mussel-Inspired Adhesives. Macromolecules, 2021, 54, 5417-5428.	4.8	12
4	Single Chain Hydration and Dynamics of Mussel-Inspired Soybean-Based Adhesive. Jom, 2021, 73, 2460-2470.	1.9	2
5	Toward the Rational Design of Organic Solar Photovoltaics: Application of Molecular Structure Methods to Donor Polymers. Journal of Physical Chemistry A, 2021, 125, 10593-10603.	2.5	12
6	Structure and Dynamics of Nanoconfined Water Between Surfactant Monolayers. Langmuir, 2020, 36, 447-455.	3.5	6
7	Rational Control of Selfâ€Recognition of Macroionic γâ€Cyclodextrin by Hostâ€Guest Interaction with Superâ€Chaotropic Borate Cluster Ions. ChemPlusChem, 2020, 85, 2316-2319.	2.8	1
8	Co-ion Effects in the Self-Assembly of Macroions: From Co-ions to Co-macroions and to the Unique Feature of Self-Recognition. Langmuir, 2020, 36, 10519-10527.	3.5	11
9	Tuning Solvent Quality Induces Morphological Phase Transitions in Miktoarm Star Polymer Films. Macromolecules, 2020, 53, 6151-6162.	4.8	6
10	Probing calcium solvation by XAS, MD and DFT calculations. RSC Advances, 2020, 10, 27315-27321.	3.6	12
11	Spreading Dynamics of Water Droplets on a Completely Wetting Surface. Journal of Physical Chemistry C, 2020, 124, 20109-20115.	3.1	8
12	High Adsorption of Benzoic Acid on Single Walled Carbon Nanotube Bundles. Scientific Reports, 2020, 10, 10013.	3.3	8
13	Continuous Curvature Change into Controllable and Responsive Onion-like Vesicles by Rigid Sphere–Rod Amphiphiles. ACS Nano, 2020, 14, 1811-1822.	14.6	20
14	Proximity to Graphene Dramatically Alters Polymer Dynamics. Macromolecules, 2019, 52, 5074-5085.	4.8	11
15	Adsorption of aromatic carboxylic acids on carbon nanotubes: impact of surface functionalization, molecular size and structure. Environmental Sciences: Processes and Impacts, 2019, 21, 2109-2117.	3.5	6
16	Interaction Geometry Causes Spectral Line-Shape Broadening at the Solid/Liquid Interface. Journal of Physical Chemistry C, 2019, 123, 30447-30457.	3.1	7
17	Atomistic Insights into Hydrogen-Bonding-Driven Competitive Adsorption of Acetone–Chloroform Binary Mixtures. Journal of Physical Chemistry C, 2019, 123, 29729-29738.	3.1	9
18	Phase manipulation of topologically engineered AB-type multi-block copolymers. RSC Advances, 2019, 9, 42029-42042.	3.6	0

#	Article	IF	CITATIONS
19	Characterizing the Hydrophobicity of Surfaces Using the Dynamics of Interfacial Water Molecules. Journal of Physical Chemistry C, 2018, 122, 9015-9020.	3.1	14
20	Effect of tacticity on the structure and glass transition temperature of polystyrene adsorbed onto solid surfaces. Journal of Chemical Physics, 2018, 148, 134705.	3.0	18
21	Chain Network: Key to the Ductile Behavior of Polymer Glasses. Macromolecules, 2018, 51, 1666-1673.	4.8	19
22	Thermal Properties and Segmental Dynamics of Polymer Melt Chains Adsorbed on Solid Surfaces. Langmuir, 2018, 34, 4199-4209.	3.5	43
23	Soft Templating of Water Aggregates Disrupts π–π Stacking in Crystalline Poly(3-hexylthiophene). Journal of Physical Chemistry C, 2018, 122, 422-428.	3.1	0
24	Synthesis and Characterization of Well-Defined, Tadpole-Shaped Polystyrene with a Single Atom Junction Point. Macromolecules, 2018, 51, 9509-9518.	4.8	7
25	Unique Symmetry-Breaking Phenomenon during the Self-assembly of Macroions Elucidated by Simulation. Scientific Reports, 2018, 8, 13076.	3.3	14
26	Solvent and Substrate Induced Synergistic Ordering in Block Copolymer Thin Films. Macromolecules, 2018, 51, 7186-7196.	4.8	9
27	Surface Segregation of Cyclic Chains in Binary Melts of Thin Polymer Films: The Influence of Constituent Concentration. Polymers, 2018, 10, 324.	4.5	5
28	Strain rate and temperature dependence of the mechanical properties of polymers: A universal time-temperature superposition principle. Journal of Chemical Physics, 2018, 149, 044105.	3.0	11
29	Polymers Based on Benzodipyrrolidone and Naphthodipyrrolidone with Latent Hydrogenâ€Bonding on the Main Chain. Macromolecular Chemistry and Physics, 2017, 218, 1600617.	2.2	30
30	Hydrogen bond directed surface dynamics at tactic poly(methyl methacrylate)/water interface. Soft Matter, 2017, 13, 8556-8564.	2.7	5
31	Molecular Dynamics Simulation Study of Polymer Nanocomposites with Controllable Dispersion of Spherical Nanoparticles. Journal of Physical Chemistry B, 2017, 121, 10146-10156.	2.6	11
32	On Modulating Interfacial Structure towards Improved Anti-Icing Performance. Coatings, 2016, 6, 3.	2.6	22
33	Carbon Nanotube Based Groundwater Remediation: The Case of Trichloroethylene. Molecules, 2016, 21, 953.	3.8	11
34	Effect of Polymer/Solid and Polymer/Vapor Instantaneous Interfaces on the Interfacial Structure and Dynamics of Polymer Melt Systems. Langmuir, 2016, 32, 7151-7158.	3.5	11
35	Interfacial Engineering for Oil and Gas Applications: Role of Modeling and Simulation. , 2016, , 257-283.		3
36	Elucidating the Origin of the Attractive Force among Hydrophilic Macroions. Scientific Reports, 2016, 6, 26595.	3.3	27

#	Article	IF	CITATIONS
37	Surface enrichment driven by polymer topology. Physical Review E, 2016, 93, 050501.	2.1	16
38	Single-Junction Polymer Solar Cells with Over 10% Efficiency by a Novel Two-Dimensional Donor–Acceptor Conjugated Copolymer. ACS Applied Materials & Interfaces, 2015, 7, 4928-4935.	8.0	256
39	Interfacial and wetting properties of poly(3-hexylthiophene)–water systems. Chemical Physics Letters, 2015, 635, 139-145.	2.6	7
40	Local Structure Contributions to Surface Tension of a Stereoregular Polymer. ACS Macro Letters, 2015, 4, 1234-1238.	4.8	11
41	Tuning range-separated DFT functionals for accurate orbital energy modeling of conjugated molecules. Computational and Theoretical Chemistry, 2015, 1070, 14-20.	2.5	18
42	Understanding structural and electronic properties of dithienyl benzothiadiazole and its complex with C70. Polymer, 2015, 75, 73-77.	3.8	8
43	Understanding the effect of heteroatoms on structural and electronic properties of conjugated polymers. Polymer, 2015, 56, 293-299.	3.8	11
44	Molecular Structure of Poly(methyl methacrylate) Surface II: Effect of Stereoregularity Examined through All-Atom Molecular Dynamics. Langmuir, 2014, 30, 12775-12785.	3.5	25
45	Chain length and torsional dependence of exciton binding energies in P3HT and PTB7 conjugated polymers: A first-principles study. Polymer, 2014, 55, 2667-2672.	3.8	52
46	Epitaxial transfer through end-group coordination modulates the odd–even effect in an alkanethiol monolayer assembly. Nanoscale, 2014, 6, 3496-3502.	5.6	8
47	Effect of Fluorination on Electronic Properties of Polythienothiophene- <i>co</i> -benzodithiophenes and Their Fullerene Complexes. ACS Applied Materials & Interfaces, 2014, 6, 15889-15896.	8.0	13
48	Molecular Structure of Poly(methyl methacrylate) Surface. I. Combination of Interface-Sensitive Infrared–Visible Sum Frequency Generation, Molecular Dynamics Simulations, and ab Initio Calculations. Langmuir, 2014, 30, 11609-11618.	3.5	44
49	Torsionally-Induced Blue Shift of the Band Gap in Poly(3-Hexylthiophene). Journal of Computational and Theoretical Nanoscience, 2014, 11, 2157-2164.	0.4	11
50	Improved Force Field for Molecular Modeling of Poly(3-hexylthiophene). Journal of Physical Chemistry B, 2013, 117, 10035-10045.	2.6	52
51	Interfacial Properties of Oxidized Polystyrene and Its Interaction with Water. Langmuir, 2013, 29, 13230-13238.	3.5	17
52	Molecular modeling of elastic properties of thermosetting polymers using aÂdynamic deformation approach. Polymer, 2013, 54, 3370-3376.	3.8	53
53	Nanostructures and Electronic Properties of a High-Efficiency Electron-Donating Polymer. Journal of Physical Chemistry A, 2013, 117, 12628-12634.	2.5	23
54	MOLECULAR MODELING OF THERMAL AND MECHANICAL PROPERTIES OF ELASTOMERS: A REVIEW. Rubber Chemistry and Technology, 2013, 86, 401-422.	1.2	16

#	Article	IF	CITATIONS
55	Static and dynamic properties of poly(3-hexylthiophene) films at liquid/vacuum interfaces. Journal of Chemical Physics, 2012, 137, 204701.	3.0	13
56	Interfacial properties of free-standing poly(3-hexylthiophene) films. Journal of Chemical Physics, 2012, 137, 044703.	3.0	16
57	Conformations and torsional potentials of poly(3-hexylthiophene) oligomers: Density functional calculations up to the dodecamer. Computational and Theoretical Chemistry, 2012, 995, 36-42.	2.5	37
58	Molecular Modeling Approach to Prediction of Thermo-Mechanical Behavior of Thermoset Polymer Networks. Macromolecules, 2012, 45, 5307-5315.	4.8	132
59	Structural properties of atactic polystyrene adsorbed onto solid surfaces. Journal of Chemical Physics, 2011, 135, 174708.	3.0	28
60	Application of Carbon Nanotubes for Removing Organic Contaminants from Water. Materials Express, 2011, 1, 183-200.	0.5	24
61	Carbon nanotube-textured sand for controlling bioavailability of contaminated sediments. Nano Research, 2010, 3, 412-422.	10.4	11
62	Simulation Study of the Silicon Oxide and Water Interface. Journal of Computational and Theoretical Nanoscience, 2010, 7, 2586-2601.	0.4	8
63	Effect of chain stiffness on the morphology of diblock copolymer melts. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 2556-2565.	2.1	4
64	Interfacial Structure and Dynamics of Siloxane Systems: PDMSâ^'Vapor and PDMSâ^'Water. Macromolecules, 2009, 42, 3186-3194.	4.8	74
65	Surface Tension and Surface Orientation of Perfluorinated Alkanes. Journal of Physical Chemistry C, 2008, 112, 5029-5035.	3.1	31
66	Packing of poly(tetrafluoroethylene) in the liquid state: Molecular dynamics simulation and theory. Journal of Chemical Physics, 2008, 129, 214901.	3.0	11
67	Surface tension of normal and branched alkanes. Molecular Physics, 2007, 105, 3155-3163.	1.7	45
68	Structure of Poly(dialkylsiloxane) Melts:  Comparisons of Wide-Angle X-ray Scattering, Molecular Dynamics Simulations, and Integral Equation Theory. Macromolecules, 2007, 40, 7036-7043.	4.8	20
69	Morphology of Evaporated Multiblock Copolymer Membranes Studied by Molecular Dynamics Simulations. Macromolecules, 2004, 37, 9132-9138.	4.8	23
70	Molecular dynamics simulation of solvent–polymer interdiffusion: Fickian diffusion. Journal of Chemical Physics, 2004, 120, 2989-2995.	3.0	57
71	Atomistic Simulations of End-Linked Poly(dimethylsiloxane) Networks:Â Structure and Relaxation. Macromolecules, 2004, 37, 3857-3864.	4.8	135
72	Adsorptive Structure and Mobility on Carbon Nanotube Exteriors Using Benzoic Acid as a Molecular Probe of Amphiphilic Water Contaminants. Journal of Physical Chemistry B, O, , .	2.6	1