
Manuel Aenlle

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6002772/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Fatigue behaviour of hot rolled reinforcing bars of austenitic and duplex stainless steels. Materials Science and Technology, 2007, 23, 145-150.	1.6	59
2	Specimen length effect on parameter estimation in modelling fatigue strength by Weibull distribution. International Journal of Fatigue, 2006, 28, 1047-1058.	5.7	55
3	Study of the time-temperature-dependent behaviour of PVB: Application to laminated glass elements. Thin-Walled Structures, 2017, 119, 324-331.	5.3	50
4	A local correspondence principle for mode shapes in structural dynamics. Mechanical Systems and Signal Processing, 2014, 45, 91-104.	8.0	49
5	ProFatigue: A Software Program for Probabilistic Assessment of Experimental Fatigue Data Sets. Procedia Engineering, 2014, 74, 236-241.	1.2	48
6	On exact and approximated formulations for scaling-mode shapes in operational modal analysis by mass and stiffness change. Journal of Sound and Vibration, 2012, 331, 622-637.	3.9	47
7	Modal scaling in operational modal analysis using a finite element model. International Journal of Mechanical Sciences, 2013, 76, 86-101.	6.7	46
8	Scaling-factor estimation using an optimized mass-change strategy. Mechanical Systems and Signal Processing, 2010, 24, 1260-1273.	8.0	41
9	A fatigue model with local sensitivity analysis. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 149-168.	3.4	36
10	Mode shape sensitivity of two closely spaced eigenvalues. Journal of Sound and Vibration, 2015, 334, 377-387.	3.9	35
11	A general regression model for statistical analysis of strain–life fatigue data. Materials Letters, 2008, 62, 3639-3642.	2.6	34
12	A critical comparison of two models for assessment of fatigue data. International Journal of Fatigue, 2008, 30, 45-57.	5.7	28
13	Dynamic effective thickness in laminated-glass beams and plates. Composites Part B: Engineering, 2014, 67, 332-347.	12.0	25
14	Mechanical characterization of polyvinil butyral from static and modal tests on laminated glass beams. Composites Part B: Engineering, 2019, 169, 9-18.	12.0	21
15	Modal Analysis Based Stress Estimation for Structural Elements Subjected to Operational Dynamic Loadings. Experimental Mechanics, 2015, 55, 1791-1802.	2.0	19
16	A comparative review of time- and frequency-domain methods for fatigue damage assessment. International Journal of Fatigue, 2022, 163, 107069.	5.7	19
17	Buckling of laminated-glass beams using the effective-thickness concept. Composite Structures, 2016, 137, 44-55.	5.8	17
18	The effective-thickness concept in laminated-glass elements under static loading. Engineering Structures, 2013, 56, 1092-1102.	5.3	16

MANUEL AENLLE

#	Article	IF	CITATIONS
19	Frequency Response of Laminated Glass Elements: Analytical Modeling and Effective Thickness. Applied Mechanics Reviews, 2013, 65, .	10.1	16
20	A general procedure for estimating dynamic displacements using strain measurements and operational modal analysis. Smart Materials and Structures, 2016, 25, 025020.	3.5	16
21	Modal Mass and Length of Mode Shapes in Structural Dynamics. Shock and Vibration, 2020, 2020, 1-16.	0.6	16
22	A new scenario-based approach to damage detection using operational modal parameter estimates. Mechanical Systems and Signal Processing, 2017, 94, 359-373.	8.0	15
23	Long-term loading and recovery of a laminated glass slab with three different interlayers. Construction and Building Materials, 2021, 287, 122991.	7.2	14
24	Scaling Mode Shapes in Output-Only Systems by a Consecutive Mass Change Method. Experimental Mechanics, 2011, 51, 995-1005.	2.0	12
25	An effective thickness to estimate stresses in laminated glass beams under dynamic loadings. Composites Part B: Engineering, 2015, 82, 1-12.	12.0	11
26	Flexural fatigue behaviour of a heated ultra-high-performance fibre-reinforced concrete. Construction and Building Materials, 2021, 276, 122209.	7.2	11
27	Buckling of multilayered laminated glass beams: Validation of the effective thickness concept. Composite Structures, 2017, 169, 2-9.	5.8	10
28	Natural frequencies and damping ratios of multi-layered laminated glass beams using a dynamic effective thickness. Journal of Sandwich Structures and Materials, 2019, 21, 439-463.	3.5	10
29	Some fatigue damage measures for longitudinal elements based on the Wohler field. Fatigue and Fracture of Engineering Materials and Structures, 2007, 30, 1063-1075.	3.4	8
30	Estimating the S–N Field From Strain–Lifetime Curves. Strain, 2011, 47, e93.	2.4	8
31	Static and dynamic effective thickness in five-layered glass plates. Composite Structures, 2019, 212, 259-270.	5.8	8
32	Application of Modal Superposition Technique in the Fatigue Analysis Using Local Approaches. Procedia Engineering, 2016, 160, 45-52.	1.2	7
33	Using statistical compatibility to derive advanced probabilistic fatigue models. Procedia Engineering, 2010, 2, 1131-1140.	1.2	6
34	Cálculo de desplazamientos en placas de vidrio laminado sometidas a carga estática mediante el concepto de m³dulo de elasticidad efectivo. Boletin De La Sociedad Espanola De Ceramica Y Vidrio, 2015, 54, 69-76.	1.9	3
35	Calculation of displacements and stresses in laminated glass beams under dynamic loadings using an effective Young modulus. Procedia Engineering, 2017, 199, 1405-1410.	1.2	3
36	Dynamic Behavior of Supported Structures from Free-Free Modal Tests Using Structural Dynamic Modification. Shock and Vibration, 2018, 2018, 1-14.	0.6	3

MANUEL AENLLE

#	Article	IF	CITATIONS
37	Buckling of laminated glass plates using the effective thickness concept. Journal of Sandwich Structures and Materials, 2021, 23, 3303-3335.	3.5	3
38	One-Step FE Model Updating Using Local Correspondence and Mode Shape Orthogonality. Shock and Vibration, 2019, 2019, 1-12.	0.6	2
39	Corrigendum to "Modal Mass and Length of Mode Shapes in Structural Dynamics― Shock and Vibration, 2021, 2021, 1-16.	0.6	2
40	Experimental study and comparison of different fully transparent laminated glass beam designs. Glass Structures and Engineering, 2021, 6, 463-486.	1.7	1
41	Strain Estimation in a Glass Beam Using Operational Modal Analysis. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 375-382.	0.5	1
42	Modal Scaling in OMA Using the Mass matrix of a Finite Element Model. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 263-270.	0.5	1
43	Detection of Mass Change on a Glass Plate. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 61-66.	0.5	1
44	Fatigue damage detection and prediction of fatigue life on a cantilever beam. International Journal of Structural Integrity, 2017, 8, 648-655.	3.3	0
45	Modal Participation Estimated from the Response Correlation Matrix. Shock and Vibration, 2019, 2019, 1-10.	0.6	Ο
46	Robust Cross-Orthogonality Check Using the Principle of Local Correspondence. Shock and Vibration, 2020, 2020, 1-12.	0.6	0
47	Influence of the Support Conditions in the Modal Parameters of a Cantilever Beam. Conference Proceedings of the Society for Experimental Mechanics, 2013, , 335-341.	0.5	0
48	Dynamic Behavior of Laminated Glass Beams. Conference Proceedings of the Society for Experimental Mechanics, 2014, , 283-291.	0.5	0