
Cristina Albanesi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6002460/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multiple Roles for Cytokines in Atopic Dermatitis: From Pathogenic Mediators to Endotype-Specific Biomarkers to Therapeutic Targets. International Journal of Molecular Sciences, 2022, 23, 2684.	4.1	27
2	The phosphoinositideâ€3â€kinase (PI3K)â€delta inhibitor seletalisib impairs monocyteâ€derived dendritic cells maturation, APC function, and promotes their migration to CCR7 and CXCR4 ligands. Journal of Leukocyte Biology, 2022, , .	3.3	0
3	<i>HLA-Cw6</i> and other HLA-C alleles, as well as <i>MICB-DT, DDX58,</i> and <i>TYK2</i> genetic variants associate with optimal response to anti-IL-17A treatment in patients with psoriasis. Expert Opinion on Biological Therapy, 2021, 21, 259-270.	3.1	22
4	Recent Updates on the Involvement of PI3K/AKT/mTOR Molecular Cascade in the Pathogenesis of Hyperproliferative Skin Disorders. Frontiers in Medicine, 2021, 8, 665647.	2.6	45
5	Enhanced NAMPT-Mediated NAD Salvage Pathway Contributes to Psoriasis Pathogenesis by Amplifying Epithelial Auto-Inflammatory Circuits. International Journal of Molecular Sciences, 2021, 22, 6860.	4.1	6
6	PI3Kδ Sustains Keratinocyte Hyperproliferation and Epithelial Inflammation: Implications for a Topically Druggable Target in Psoriasis. Cells, 2021, 10, 2636.	4.1	6
7	Experimental Methods for the Immunological Characterization of Paradoxical Psoriasis Reactions Induced by TNF-α Biologics. Methods in Molecular Biology, 2021, 2248, 155-165.	0.9	3
8	Paradoxical psoriasis induced by TNFâ€Î± blockade shows immunological features typical of the early phase of psoriasis development. Journal of Pathology: Clinical Research, 2020, 6, 55-68.	3.0	27
9	ILâ€17C amplifies epithelial inflammation in human psoriasis and atopic eczema. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 800-809.	2.4	26
10	Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections. Vaccines, 2020, 8, 517.	4.4	65
11	Pathogenesis of Chronic Plaque Psoriasis and Its Intersection With Cardio-Metabolic Comorbidities. Frontiers in Pharmacology, 2020, 11, 117.	3.5	80
12	Interleukin (IL)-17/IL-36 axis participates to the crosstalk between endothelial cells and keratinocytes during inflammatory skin responses. PLoS ONE, 2020, 15, e0222969.	2.5	40
13	Platelet lysate promotes the expansion of T regulatory cells that favours in vitro wound healing by increasing keratinocyte migration and fibroblast production of extracellular matrix components. European Journal of Dermatology, 2020, 30, 3-11.	0.6	7
14	Intracellular Insulin-like growth factor binding protein 2 (IGFBP2) contributes to the senescence of keratinocytes in psoriasis by stabilizing cytoplasmic p21. Aging, 2020, 12, 6823-6851.	3.1	20
15	The Significance of IL-36 Hyperactivation and IL-36R Targeting in Psoriasis. International Journal of Molecular Sciences, 2019, 20, 3318.	4.1	91
16	The Oxidative Stress-Induced miR-200c Is Upregulated in Psoriasis and Correlates with Disease Severity and Determinants of Cardiovascular Risk. Oxidative Medicine and Cellular Longevity, 2019, 2019, 1-12.	4.0	23
17	Immunology of Psoriasis. , 2019, , 871-878.e1.		12
18	Selective Immunomodulation of Inflammatory Pathways in Keratinocytes by the Janus Kinase (JAK) Inhibitor Tofacitinib: Implications for the Employment of JAK-Targeting Drugs in Psoriasis. Journal of Immunology Research, 2018, 2018, 1-18.	2.2	32

#	Article	IF	CITATIONS
19	IL-38 has an anti-inflammatory action in psoriasis and its expression correlates with disease severity and therapeutic response to anti-IL-17A treatment. Cell Death and Disease, 2018, 9, 1104.	6.3	104
20	The Interplay Between Keratinocytes and Immune Cells in the Pathogenesis of Psoriasis. Frontiers in Immunology, 2018, 9, 1549.	4.8	279
21	Characterization of linear mimetic peptides of Interleukin-22 from dissection of protein interfaces. Biochimie, 2017, 138, 106-115.	2.6	17
22	Knockout of the Arp2/3 complex in epidermis causes a psoriasis-like disease hallmarked by hyperactivation of transcription factor Nrf2. Development (Cambridge), 2017, 144, 4588-4603.	2.5	41
23	SOCS3 inhibits the pathological effects of IL-22 in non-melanoma skin tumor-derived keratinocytes. Oncotarget, 2017, 8, 24652-24667.	1.8	19
24	Luteolin-7-glucoside inhibits IL-22/STAT3 pathway, reducing proliferation, acanthosis, and inflammation in keratinocytes and in mouse psoriatic model. Cell Death and Disease, 2016, 7, e2344-e2344.	6.3	73
25	The role of oncogenic Ras in human skin tumorigenesis depends on clonogenic potential of the founding keratinocytes. Journal of Cell Science, 2016, 129, 1003-17.	2.0	13
26	Purinergic signaling in scarring. FASEB Journal, 2016, 30, 3-12.	0.5	65
27	Interleukinâ€17 and interleukinâ€22 promote tumor progression in human nonmelanoma skin cancer. European Journal of Immunology, 2015, 45, 922-931.	2.9	74
28	Allergic Contact Dermatitis in Psoriasis Patients: Typical, Delayed, and Non-Interacting. PLoS ONE, 2014, 9, e101814.	2.5	30
29	Inhibition of Inflammatory and Proliferative Responses of Human Keratinocytes Exposed to the Sesquiterpene Lactones Dehydrocostuslactone and Costunolide. PLoS ONE, 2014, 9, e107904.	2.5	42
30	Heterogeneity of psoriasis and bimodal activation of local immune responses. British Journal of Dermatology, 2014, 170, 7-8.	1.5	2
31	Therapeutical potential of a peptide mimicking the <scp>SOCS</scp> 1 kinase inhibitory region in skin immune responses. European Journal of Immunology, 2013, 43, 1883-1895.	2.9	43
32	Immunology of psoriasis. , 2013, , 775-781.		1
33	New mimetic peptides of the kinase-inhibitory region (KIR) of SOCS1 through focused peptide libraries. Biochemical Journal, 2012, 443, 231-240.	3.7	46
34	Anti-apoptotic effects of suppressor of cytokine signaling 3 and 1 in psoriasis. Cell Death and Disease, 2012, 3, e334-e334.	6.3	67
35	Human neutrophils interact with both 6-sulfo LacNAc+ DC and NK cells to amplify NK-derived IFNÎ ³ : role of CD18, ICAM-1, and ICAM-3. Blood, 2011, 117, 1677-1686.	1.4	92
36	On the potential involvement of CD11d in co-stimulating the production of interferon-Â by natural killer cells upon interaction with neutrophils via intercellular adhesion molecule-3. Haematologica, 2011, 96, 1543-1547.	3.5	16

1

#	Article	IF	CITATIONS
37	ILâ€22 and TNFâ€Î± represent a key cytokine combination for epidermal integrity during infection with <i>Candida albicans</i> . European Journal of Immunology, 2011, 41, 1894-1901.	2.9	122
38	STAT3â€dependent effects of ILâ€⊋2 in human keratinocytes are counterregulated by sirtuin 1 through a direct inhibition of STAT3 acetylation. FASEB Journal, 2011, 25, 916-927.	0.5	133
39	Sirtinol Treatment Reduces Inflammation in Human Dermal Microvascular Endothelial Cells. PLoS ONE, 2011, 6, e24307.	2.5	61
40	Keratinocytes in allergic skin diseases. Current Opinion in Allergy and Clinical Immunology, 2010, 10, 452-456.	2.3	84
41	Pathobiology of Chronic Inflammatory Skin Diseases: Interplay Between Keratinocytes and Immune Cells as a Target for Anti-Inflammatory Drugs. Current Drug Metabolism, 2010, 11, 210-227.	1.2	69
42	IL-17 Amplifies Human Contact Hypersensitivity by Licensing Hapten Nonspecific Th1 Cells to Kill Autologous Keratinocytes. Journal of Immunology, 2010, 184, 4880-4888.	0.8	105
43	The IFN-γ–Dependent <i>Suppressor of Cytokine Signaling</i> â€^ <i>1</i> Promoter Activity Is Positively Regulated by IFN Regulatory Factor-1 and Sp1 but Repressed by Growth Factor Independence-1b and KrA¼ppel-Like Factor-4, and It Is Dysregulated in Psoriatic Keratinocytes. Journal of Immunology, 2010, 185, 2467-2481.	0.8	52
44	Immune functions and recruitment of plasmacytoid dendritic cells in psoriasis. Autoimmunity, 2010, 43, 215-219.	2.6	72
45	Chemerin expression marks early psoriatic skin lesions and correlates with plasmacytoid dendritic cell recruitment. Journal of Experimental Medicine, 2009, 206, 249-258.	8.5	268
46	Low-Frequency Low-Intensity Ultrasounds Do Not Influence the Survival and Immune Functions of Cultured Keratinocytes and Dendritic Cells. Journal of Biomedicine and Biotechnology, 2009, 2009, 1-12.	3.0	15
47	IL-17 in atopic eczema: Linking allergen-specific adaptive and microbial-triggered innate immune response. Journal of Allergy and Clinical Immunology, 2009, 123, 59-66.e4.	2.9	220
48	Suppressor of cytokine signaling 1 inhibits IFNâ€Ĵ³ inflammatory signaling in human keratinocytes by sustaining ERK1/2 activation. FASEB Journal, 2008, 22, 3287-3297.	0.5	54
49	IL-4 and IL-13 Negatively Regulate TNF-α- and IFN-γ-Induced β-Defensin Expression through STAT-6, Suppressor of Cytokine Signaling (SOCS)-1, and SOCS-3. Journal of Immunology, 2007, 179, 984-992.	0.8	176
50	Resident skin cells in psoriasis: a special look at the pathogenetic functions of keratinocytes. Clinics in Dermatology, 2007, 25, 581-588.	1.6	161
51	Analysis of IFN-κ Expression in Pathologic Skin Conditions: Downregulation in Psoriasis and Atopic Dermatitis. Journal of Interferon and Cytokine Research, 2006, 26, 133-140.	1.2	25
52	Keratinocytes in Inflammatory Skin Diseases. Inflammation and Allergy: Drug Targets, 2005, 4, 329-334.	3.1	172
53	H1 histamine receptor mediates inflammatory responses in human keratinocytes. Journal of Allergy and Clinical Immunology, 2004, 114, 1176-1182.	2.9	107

54 Chemokines of Human Skin. , 2004, , 373-392.

#	Article	IF	CITATIONS
55	Regulatory Effect of IFN-κ, A Novel Type I IFN, On Cytokine Production by Cells of the Innate Immune System. Journal of Immunology, 2002, 169, 4822-4830.	0.8	81
56	Impaired IFN-Î ³ -Dependent Inflammatory Responses in Human Keratinocytes Overexpressing the Suppressor of Cytokine Signaling 1. Journal of Immunology, 2002, 169, 434-442.	0.8	129
57	Quantitative Differences in Chemokine Receptor Engagement Generate Diversity in Integrin-Dependent Lymphocyte Adhesion. Journal of Immunology, 2002, 169, 2303-2312.	0.8	88
58	Nitric Oxide Donors Suppress Chemokine Production by Keratinocytes in Vitro and in Vivo. American Journal of Pathology, 2002, 161, 1409-1418.	3.8	41
59	The role of chemokines in allergic contact dermatitis. Archives of Dermatological Research, 2002, 293, 552-559.	1.9	130
60	Nickel-Specific CD4+ and CD8+ T Cells Display Distinct Migratory Responses to Chemokines Produced During Allergic Contact Dermatitis. Journal of Investigative Dermatology, 2002, 118, 1052-1058.	0.7	55
61	Suppressor of Cytokine Signalingâ€1. Inhibits Interferonâ€gâ€Induced Activation of Human Keratinocytes. Annals of the New York Academy of Sciences, 2002, 973, 79-82.	3.8	3
62	Allergic Contact Dermatitis. Allergy and Clinical Immunology International, 2002, 14, 156-160.	0.3	3
63	Effector and regulatory T cells in allergic contact dermatitis. Trends in Immunology, 2001, 22, 118-120.	6.8	112
64	T-cell subpopulations in the development of atopic and contact allergy. Current Opinion in Immunology, 2001, 13, 733-737.	5.5	87
65	Dendritic cells as a major source of macrophage-derived chemokine/CCL22in vitro andin vivo. European Journal of Immunology, 2001, 31, 812-822.	2.9	246
66	Regulatory Activity of Autocrine IL-10 on Dendritic Cell Functions. Journal of Immunology, 2001, 166, 4312-4318.	0.8	495
67	Chemokine Receptor Expression and Function in CD4+ T Lymphocytes with Regulatory Activity. Journal of Immunology, 2001, 166, 996-1002.	0.8	209
68	Fractalkine (CX3CL1) as an amplification circuit of polarized Th1 responses. Journal of Clinical Investigation, 2001, 107, 1173-1181.	8.2	275
69	A cytokine-to-chemokine axis between T lymphocytes and keratinocytes can favor Th1 cell accumulation in chronic inflammatory skin diseases. Journal of Leukocyte Biology, 2001, 70, 617-23.	3.3	59
70	Interleukin-17 is Produced by Both Th1 and Th2 Lymphocytes, and Modulates Interferon-Î ³ - and Interleukin-4-Induced Activation of Human Keratinocytes. Journal of Investigative Dermatology, 2000, 115, 81-87.	0.7	256
71	Human CD4+ T Lymphocytes with Remarkable Regulatory Functions on Dendritic Cells and Nickel-Specific Th1 Immune Responses. Journal of Investigative Dermatology, 2000, 114, 295-302.	0.7	197
72	IL-4 Enhances Keratinocyte Expression of CXCR3 Agonistic Chemokines. Journal of Immunology, 2000, 165, 1395-1402.	0.8	105

#	Article	IF	CITATIONS
73	Disparate Cytotoxic Activity of Nickel-Specific CD8+ and CD4+ T Cell Subsets Against Keratinocytes. Journal of Immunology, 2000, 165, 3058-3064.	0.8	135
74	Huriez syndrome: case report with a detailed analysis of skin dendritic cells. British Journal of Dermatology, 2000, 143, 1091-1096.	1.5	37
75	Interferon-Î ³ -Stimulated Human Keratinocytes Express the Genes Necessary for the Production of Peptide-Loaded MHC Class II Molecules. Journal of Investigative Dermatology, 1998, 110, 138-142.	0.7	82
76	Cetirizine and hydrocortisone differentially regulate ICAMâ€1 expression and chemokine release in cultured human keratinocytes. Clinical and Experimental Allergy, 1998, 28, 101-109.	2.9	46
77	Granulocyte macrophage colony-stimulating factor is overproduced by keratinocytes in atopic dermatitis. Implications for sustained dendritic cell activation in the skin Journal of Clinical Investigation, 1997, 99, 3009-3017.	8.2	183
78	The same sequence mediates activation of the human urokinase promoter by cAMP in mouse Sertoli cells and by SV40 large T antigen in COS cells. Molecular and Cellular Endocrinology, 1996, 117, 167-173.	3.2	8
79	Alternative Forms and Functions of the c-kit Receptor and Its Ligand During Spermatogenesis. , 1996, , 99-110.		Ο
80	Expression of the Xist Gene in Urogenital Ridges of Midgestation Male Embryos. Biochemical and Biophysical Research Communications, 1994, 205, 334-340.	2.1	6
81	Direct evidence that the mouse sex-determining geneSry is expressed in the somatic cells of male fetal gonads and in the germ cell line in the adult testis. Molecular Reproduction and Development, 1993, 34, 369-373.	2.0	82
82	Follicle-Stimulating Hormone Induction of Steel Factor (SLF) mRNA in Mouse Sertoli Cells and Stimulation of DNA Synthesis in Spermatogonia by Soluble SLF. Developmental Biology, 1993, 155, 68-74.	2.0	211
83	Identification of 3',5'-cyclic adenosine monophosphate-inducible nuclear factors binding to the human urokinase promoter in mouse Sertoli cells Molecular Endocrinology, 1993, 7, 1217-1225.	3.7	32
84	A novel c-kit transcript, potentially encoding a truncated receptor, originates within a kit gene intron in mouse spermatids. Developmental Biology, 1992, 152, 203-207.	2.0	103
85	Expression of the mRNA for the ligand of C-kit in mouse sertoli cells. Biochemical and Biophysical Research Communications, 1991, 176, 910-914.	2.1	124
86	Lens formation from the cornea following implantation into hindlimbs of larvalXenopus laevis: The influence of limb innervation and extent of differentiation. The Journal of Experimental Zoology, 1991, 260, 220-228.	1.4	9