Georgi Hudjashov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6002085/publications.pdf

Version: 2024-02-01

24 papers 2,430 citations

471509 17 h-index 24 g-index

28 all docs

28 docs citations

times ranked

28

3687 citing authors

#	Article	IF	CITATIONS
1	Genetic architecture of gene regulation in Indonesian populations identifies QTLs associated with global and local ancestries. American Journal of Human Genetics, 2022, 109, 50-65.	6.2	11
2	Episodes of Diversification and Isolation in Island Southeast Asian and Near Oceanian Male Lineages. Molecular Biology and Evolution, 2022, 39, .	8.9	9
3	Chronology of natural selection in Oceanian genomes. IScience, 2022, 25, 104583.	4.1	3
4	Widespread Denisovan ancestry in Island Southeast Asia but no evidence of substantial super-archaic hominin admixture. Nature Ecology and Evolution, 2021, 5, 616-624.	7.8	27
5	Differences in local population history at the finest level: the case of the Estonian population. European Journal of Human Genetics, 2020, 28, 1580-1591.	2.8	23
6	Genome-wide DNA methylation and gene expression patterns reflect genetic ancestry and environmental differences across the Indonesian archipelago. PLoS Genetics, 2020, 16, e1008749.	3.5	30
7	Multiple Deeply Divergent Denisovan Ancestries in Papuans. Cell, 2019, 177, 1010-1021.e32.	28.9	181
8	Investigating the origins of eastern Polynesians using genome-wide data from the Leeward Society Isles. Scientific Reports, 2018, 8, 1823.	3.3	22
9	Genes reveal traces of common recent demographic history for most of the Uralic-speaking populations. Genome Biology, 2018, 19, 139.	8.8	67
10	Evidence of Early-Stage Selection on EPAS1 and GPR126 Genes in Andean High Altitude Populations. Scientific Reports, 2017, 7, 13042.	3.3	29
11	Complex Patterns of Admixture across the Indonesian Archipelago. Molecular Biology and Evolution, 2017, 34, 2439-2452.	8.9	65
12	Genomic analyses inform on migration events during the peopling of Eurasia. Nature, 2016, 538, 238-242.	27.8	360
13	Selective sweep on human amylase genes postdates the split with Neanderthals. Scientific Reports, 2016, 6, 37198.	3.3	67
14	Small Traditional Human Communities Sustain Genomic Diversity over Microgeographic Scales despite Linguistic Isolation. Molecular Biology and Evolution, 2016, 33, 2273-2284.	8.9	12
15	A recent bottleneck of Y chromosome diversity coincides with a global change in culture. Genome Research, 2015, 25, 459-466.	5.5	348
16	Evolution of the Pygmy Phenotype: Evidence of Positive Selection from Genome-wide Scans in African, Asian, and Melanesian Pygmies. Human Biology, 2013, 85, 251-284.	0.2	66
17	The Light Skin Allele of SLC24A5 in South Asians and Europeans Shares Identity by Descent. PLoS Genetics, 2013, 9, e1003912.	3.5	93
18	Evolution of the Pygmy Phenotype: Evidence of Positive Selection from Genome-wide Scans in African, Asian, and Melanesian Pygmies. Human Biology, 2013, 85, 251.	0.2	12

#	Article	IF	CITATION
19	Global Patterns of Diversity and Selection in Human Tyrosinase Gene. PLoS ONE, 2013, 8, e74307.	2.5	21
20	Shared and Unique Components of Human Population Structure and Genome-Wide Signals of Positive Selection in South Asia. American Journal of Human Genetics, 2011, 89, 731-744.	6.2	149
21	Population Genetic Structure in Indian Austroasiatic Speakers: The Role of Landscape Barriers and Sex-Specific Admixture. Molecular Biology and Evolution, 2011, 28, 1013-1024.	8.9	135
22	Climate Change and Postglacial Human Dispersals in Southeast Asia. Molecular Biology and Evolution, 2008, 25, 1209-1218.	8.9	186
23	Revealing the prehistoric settlement of Australia by Y chromosome and mtDNA analysis. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 8726-8730.	7.1	204
24	Most of the extant mtDNA boundaries in south and southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans. BMC Genetics, 2004, 5, 26.	2.7	305