Stefan Ge Roberts

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6001515/publications.pdf

Version: 2024-02-01

30 papers

1,037 citations

16 h-index 28 g-index

34 all docs

34 docs citations

times ranked

34

1322 citing authors

#	Article	IF	CITATIONS
1	Crosstalk between \hat{I}^2 -catenin and WT1 signaling activity in acute myeloid leukemia. Haematologica, 2023, 108, 283-289.	3.5	4
2	Cholesterol is required for transcriptional repression by BASP1. Proceedings of the National Academy of Sciences of the United States of America, $2021,118,.$	7.1	11
3	WT1 activates transcription of the splice factor kinase SRPK1 gene in PC3 and K562 cancer cells in the absence of corepressor BASP1. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2020, 1863, 194642.	1.9	14
4	The WT1–BASP1 complex is required to maintain the differentiated state of taste receptor cells. Life Science Alliance, 2019, 2, e201800287.	2.8	11
5	IDPpi: Protein-Protein Interaction Analyses of Human Intrinsically Disordered Proteins. Scientific Reports, 2018, 8, 10563.	3.3	18
6	BASP1 interacts with oestrogen receptor \hat{l}_{\pm} and modifies the tamoxifen response. Cell Death and Disease, 2017, 8, e2771-e2771.	6.3	26
7	A transcription factor IIA-binding site differentially regulates RNA polymerase II-mediated transcription in a promoter context-dependent manner. Journal of Biological Chemistry, 2017, 292, 11873-11885.	3.4	12
8	TRI_tool: a web-tool for prediction of protein–protein interactions in human transcriptional regulation. Bioinformatics, 2017, 33, 289-291.	4.1	17
9	In Vitro Transcription to Study WT1 Function. Methods in Molecular Biology, 2016, 1467, 137-154.	0.9	1
10	A role of WT1 in cell division and genomic stability. Cell Cycle, 2015, 14, 1358-1364.	2.6	24
11	Abstract 3784: Regulation of chromatin condensation by mitotic checkpoint protein MAD2. , 2015, , .		О
12	Classification of a frameshift/extended and a stop mutation in WT1 as gain-of-function mutations that activate cell cycle genes and promote Wilms tumour cell proliferation. Human Molecular Genetics, 2014, 23, 3958-3974.	2.9	15
13	The transcription cycle in eukaryotes: From productive initiation to RNA polymerase II recycling. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2012, 1819, 391-400.	1.9	101
14	Phosphorylation of TFIIB Links Transcription Initiation and Termination. Current Biology, 2010, 20, 548-553.	3.9	62
15	HtrA2, taming the oncogenic activities of WT1. Cell Cycle, 2010, 9, 2508-2514.	2.6	10
16	New insights into the role of TFIIB in transcription initiation. Transcription, 2010, 1, 126-129.	3.1	11
17	The Wilms' Tumor Suppressor Protein WT1 Is Processed by the Serine Protease HtrA2/Omi. Molecular Cell, 2010, 37, 159-171.	9.7	69
18	The modulation of WTI transcription function by cofactors. Biochemical Society Symposia, 2006, 73, 191-201.	2.7	17

#	Article	IF	CITATION
19	A core promoter element downstream of the TATA box that is recognized by TFIIB. Genes and Development, 2005, 19, 2418-2423.	5.9	127
20	Transcriptional regulation by WT1 in development. Current Opinion in Genetics and Development, 2005, 15, 542-547.	3.3	91
21	Two molecular subgroups of Wilms' tumors with or without WT1 mutations. Clinical Cancer Research, 2003, 9, 2005-14.	7.0	49
22	Expression of the Oct-1 Transcription Factor and Characterization of Its Interactions with the Bob1 Coactivatorâ€. Biochemistry, 2001, 40, 6580-6588.	2.5	33
23	Activator-mediated disruption of sequence-specific DNA contacts by the general transcription factor TFIIB. Genes and Development, 2001, 15, 2945-2949.	5. 9	57
24	Par4 is a coactivator for a splice isoform-specific transcriptional activation domain in WT1. Genes and Development, 2001, 15, 328-339.	5.9	76
25	The conformation of the transcription factor TFIIB modulates the response to transcriptional activators in vivo. Current Biology, 2000, 10, 273-276.	3.9	27
26	Regulation of the Wilms' tumour suppressor protein transcriptional activation domain. Oncogene, 1999, 18, 6546-6554.	5.9	27
27	The Role of Human TFIIB in Transcription Start Site Selection in Vitro and in Vivo. Journal of Biological Chemistry, 1999, 274, 14337-14343.	3.4	57
28	[8] Purification and analysis of functional preinitiation complexes preinitiation complexes. Methods in Enzymology, 1996, 273, 110-118.	1.0	6
29	A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Current Biology, 1995, 5, 508-516.	3.9	57
30	The mouse proline-rich protein MP6 promoter binds isoprenaline-inducible parotid nuclear proteins	14.5	7